home *** CD-ROM | disk | FTP | other *** search
Text File | 1991-08-06 | 74.6 KB | 3,468 lines |
- C Calculation of the one loop longitudinal WW sattering amplitude.
- M. Veltman and F. Yndurain.
-
- U-particle with mass M or m depending on _Sw0=1 or 0.
- Can be set on command line: S=1
-
- Running times quoted are for a 68020 system. For 68000 multiply by 2.
-
- External file used: WWb.e
-
- C WW-scattering 1. Polarization vectors.
- C WW-scattering 2. Tree amplitude, general expression.
- Produces file TreeWW, containing TreeWW.
- C WW-scattering 3. Tree amplitude, case of longitudinal W's.
- Uses output of 2.
- C WW-scattering 4. Tree amplitude, Fi-Fi scattering.
- C WW-scattering 5. One loop diagrams, two external lines.
- C WW-scattering 6. One loop diagrams, three external lines.
- C WW-scattering 7. One loop Fi-Fi scattering, part 1. 33 sec.
- Produces BoxFF1, containing BoxFF.
- C WW-scattering 8. One loop Fi-Fi scattering, part 2. 228 sec.
- Uses output from 7.
- Produces BoxFF2, containing BoxFF.
- C WW-scattering 9. One loop Fi-Fi scattering, part 3. 125 sec.
- Uses output from 8.
- Produces BoxFF_comm, containing Ftot.
- C WW-scattering 10. Fi-Fi Renormalization. Result Fi-Fi amplitude.
- Uses output from 8.
- C WW-scattering 11. One loop W-W scattering, part 1. 681 sec.
- Produces BoxWW1, containing BoxWW.
- C WW-scattering 12. One loop W-W scattering, part 2. 605 sec.
- Uses output from 11.
- Produces BoxWW2, containing BoxWW.
- C WW-scattering 13. One loop W-W scattering, part 3. 447 sec.
- Uses output from 12.
- Produces BoxWW_comm, containing Wtot.
- C WW-scattering 14. W-W Renormalization. Result W-W amplitude.
- Uses output from 13.
- C WW-scattering 15. Verification of part of WW scattering calculation.
- Uses output from 11.
- C WW-scattering 16. Infinities and Log's of irreducible 4-point W function.
-
- *end
-
- C WW-scattering 1. Polarization vectors.
- Dot-products in restframe.
- Verification of equations used below.
-
- C A k0,kl,sin,cos,M
-
- D Xk(n) = 0, 0, kl, i*k0
- D Xp(n) = 0, 0, -kl, i*k0
- D Xpp(n) = -kl*sin, 0, -kl*cos, i*k0
- D Xkp(n) = kl*sin, 0, kl*cos, i*k0
-
- D Xek(n) = 0, 0, k0/M, i*kl/M
- D Xep(n) = 0, 0, -k0/M, i*kl/M
- D Xfp(n)=-k0*sin/M, 0, -k0*cos/M, i*kl/M
- D Xfk(n)=k0*sin/M, 0, k0*cos/M, i*kl/M
-
- X Dot(Xk,Xp) = DS(j,1,4,(Xk(j)*Xp(j)))
-
- Z ekDp = Dot(Xek,Xp)
- Z ekDpp = Dot(Xek,Xpp)
- Z ekDep = Dot(Xek,Xep)
- Z ekDfk = Dot(Xek,Xfk)
- Z ekDfp = Dot(Xek,Xfp)
- Z epDk = Dot(Xep,Xk)
- Z epDpp = Dot(Xep,Xpp)
- Z epDfk = Dot(Xep,Xfk)
- Z epDfp = Dot(Xep,Xfp)
- Z fkDk = Dot(Xfk,Xk)
- Z fkDp = Dot(Xfk,Xp)
- Z fkDfp = Dot(Xfk,Xfp)
- Z fpDk = Dot(Xfp,Xk)
- Z fpDp = Dot(Xfp,Xp)
- Id,sin^2=1-cos^2
- *end
-
- C WW-scattering 2. Tree amplitude, general expression.
- Result is written to file TreeWW. Used in part 3.
-
- The term V4 is maintained to show how the pure 4-vertex behaves.
- Renamed Fourv in part 3.
-
- P ninput
-
- Read WWb.e
- VERT{}
- *fix
-
- Common TreeWW
-
- P stats
- I mu,nu
- I a=3,b=3,c=3,d=3,e=3,f=3,g=3,h=3,j=3
-
- A kl,k0,sin,cos
-
- Z TreeWW(al,be,ga,de) = Tree("W,a,al,k,"W,b,be,p,"W,c,ga,pp,"W,d,de,kp)
-
- Id,Tree(I1~,a~,al~,k~,I2~,b~,be~,p~,I3~,c~,ga~,pp~,I4~,d~,de~,kp~) =
-
- DS(I1;I4;-J,(TreeT(I1,I2,I3,I4,J,a,al,k,b,be,p,c,ga,pp,d,de,kp)))
- + DS(I1;I2;-K,(TreeS(I1,I2,I3,I4,K,a,al,k,b,be,p,c,ga,pp,d,de,kp)))
- + DS(I1;I3;-L,(TreeU(I1,I2,I3,I4,L,a,al,k,b,be,p,c,ga,pp,d,de,kp)))
-
- + (1+V4)*VE4(I1,I2,I3,I4,*,a,al,k,*,b,be,p,*,c,ga,pp,*,d,de,kp)
-
- Id,TreeS(I1~,I2~,I3~,I4~,K1~,a~,al~,k~,b~,be~,p~,c~,ga~,pp~,d~,de~,kp~)=
- VE3(I1,I2,-K1,*,a,al,k,*,b,be,p,*,l1,ka,-qs)*
- VE3(I3,I4,K1,*,c,ga,-pp,*,d,de,-kp,*,l2,kap,qs)*
- PROP(K1,-K1,*,l1,ka,qs,*,l2,kap,-qs)
- Al,TreeT(I1~,I2~,I3~,I4~,K1~,a~,al~,k~,b~,be~,p~,c~,ga~,pp~,d~,de~,kp~)=
- VE3(I1,I4,-K1,*,a,al,k,*,d,de,-kp,*,l1,ka,-qt)*
- VE3(I2,I3,K1,*,b,be,p,*,c,ga,-pp,*,l2,kap,qt)*
- PROP(K1,-K1,*,l1,ka,qt,*,l2,kap,-qt)
- Al,TreeU(I1~,I2~,I3~,I4~,K1~,a~,al~,k~,b~,be~,p~,c~,ga~,pp~,d~,de~,kp~)=
- VE3(I1,I3,-K1,*,a,al,k,*,c,ga,-pp,*,l1,ka,-qu)*
- VE3(I2,I4,K1,*,b,be,p,*,d,de,-kp,*,l2,kap,qu)*
- PROP(K1,-K1,*,l1,ka,qu,*,l2,kap,-qu)
-
- Id,Anti,TAP
-
- Id,Compo,<X>,VE4,VE3,PROP
- Id,VE4(FF~,l1~,al~,k~,l2~,be~,p~,l3~,ga~,pp~,l4~,la~,kp~)=
- FF(l1,al,k,l2,be,p,l3,ga,pp,l4,la,kp)
- Al,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
-
- Id,kp(al~)=p(al)+k(al)-pp(al)
- Al,Dotpr,kp(al~)=p(al)+k(al)-pp(al)
- *yep
- Id,qt(al~)=-p(al)+pp(al)
- Al,Dotpr,qt(al~)=-p(al)+pp(al)
- Id,qs(al~)=p(al)+k(al)
- Al,Dotpr,qs(al~)=p(al)+k(al)
- Id,qu(al~)=k(al)-pp(al)
- Al,Dotpr,qu(al~)=k(al)-pp(al)
- Id,k(al)=0
- Al,p(be)=0
- Al,pp(ga)=0
- Al,pp(de)=p(de)+k(de)
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Id,Epfred
- *yep
- C s = - (p+k)^2 = -pDp - 2*pDk - kDk
- t = - (p-pp)^2 = - pDp + 2*pDpp - ppDpp
- u = - (k-pp)^2 = - kDk + 2*kDpp - ppDpp
- s + t + u = 4*M^2
-
- Id,pDk =-0.5*s-0.5*pDp-0.5*kDk
- Al,pDpp= 0.5*t+0.5*pDp+0.5*ppDpp
- Al,kDpp= 0.5*u+0.5*kDk+0.5*ppDpp
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- *yep
-
- Id,NOM(-qs,M)=-1/s*(1+M^2/s+M^4/s^2)
- Al,NOM(-qt,M)=-1/t*(1+M^2/t+M^4/t^2)
- Al,NOM(-qu,M)=-1/u*(1+M^2/u+M^4/u^2)
- Id,Count,-3,s,2,t,2,u,2,k,1,p,1,pp,1,V4,10
- *begin
-
- Write TreeWW
- *end
-
- C WW-scattering 3. Tree amplitude, case of longitudinal W's.
- Uses output of 2.
-
- Filling in the transversal polarization vectors.
-
- Enter TreeWW
- *fix
-
- P ninput
-
- V ek,ep,fp,fk
- A cos,sin
-
- Names TreeWW
-
- Z Ampl= ek(al)*ep(be)*fp(ga)*fk(de) * TreeWW(al,be,ga,de)
-
- C In restframe:
- k = 0 0 kl i*k0
- p = 0 0 -kl i*k0
- pp = -kl*sin 0 -kl*cos i*k0
- kp = kl*sin 0 kl*cos i*k0
-
- ek = 0 0 k0/M i*kl/M
- ep = 0 0 -k0/M i*kl/M
- fp=-k0*sin/M 0 -k0*cos/M i*kl/M
- fk=k0*sin/M 0 k0*cos/M i*kl/M
-
- Id,ekDp = -2*k0*kl/M
- Al,ekDpp = -kl*k0*cos/M - kl*k0/M
- Al,ekDep = -k0^2/M^2 - kl^2/M^2
- Al,ekDfk= k0^2*cos/M^2 - kl^2/M^2
- Al,ekDfp=-k0^2*cos/M^2 - kl^2/M^2
- Id,epDk = -2*k0*kl/M
- Al,epDpp = kl*k0*cos/M - kl*k0/M
- Al,epDfk=-k0^2*cos/M^2 - kl^2/M^2
- Al,epDfp= k0^2*cos/M^2 - kl^2/M^2
- Id,fkDk = k0*kl*cos/M - k0*kl/M
- Al,fkDp =-k0*kl*cos/M - k0*kl/M
- Al,fkDfp= -k0^2/M^2 - kl^2/M^2
- Id,fpDk = -k0*kl*cos/M - k0*kl/M
- Al,fpDp = k0*kl*cos/M - k0*kl/M
- *yep
-
- C Remember: pDk =-0.5*s + M^2
- pDpp = 0.5*t - M^2
- kDpp = 0.5*u - M^2
- Id,cos=1+0.5*t/kl^2
- Id,Multi,kl^2 = 0.25*s - M^2
- Al,Multi,k0^2=0.25*s
- Id,Count,2,s,2,t,2,u,2,NOM,2,kl,1
- *yep
-
- Id,Multi,kl^-2= 4/s*(1 + 4*M^2/s + 16*M^4/s^2)
- Id,Count,2,s,2,t,2,u,2,NOM,2,kl,1
- *yep
-
- IF s
- Id,3,s^n~*u^-2 = s^(n-1)*(- t - u + 4*M^2)/u^2
- ENDIF
- Id,Count,2,s,2,t,2,u,2,NOM,2,kl,1
- *yep
-
- IF s
- Id,3,s^n~*u^-1 = s^(n-1)*(- t - u + 4*M^2)/u
- ENDIF
- Id,Count,2,s,2,t,2,u,2,NOM,-2
- *yep
-
- Id,t^3*u^-1=t^2*(- s - u + 4*M^2)/u
- Id,Count,2,s,2,t,2,u,2,NOM,-2
- *yep
-
- C Id,u*s^-1 = ( - s - t + 4*M^2)/s
- Id,u=- s -t + 4*M^2
- Id,Count,2,s,2,t,2,u,2,NOM,-2,V4,10
- IF D(a,c)
- Id,t=-s-u
- ENDIF
-
- F Fourv
- Id,V4=Fourv
- *end
-
- C WW-scattering 4. Tree amplitude, Fi-Fi scattering.
-
- Tree diagrams with four FI lines.
- Verifying the equivalence theorem.
-
- P ninput
- Read WWb.e
- VERT{}
- *fix
-
- P stats
- I mu,nu
- I a=3,b=3,c=3,d=3,e=3,f=3,g=3,h=3,j=3
-
- A kl,k0,sin,cos
-
- Z TreeFF = Tree("F,a,al,k,"F,b,be,p,"F,c,ga,pp,"F,d,de,kp)
-
- Id,Tree(I1~,a~,al~,k~,I2~,b~,be~,p~,I3~,c~,ga~,pp~,I4~,d~,de~,kp~) =
-
- DS(I1;I4;-J,(TreeT(I1,I2,I3,I4,J,a,al,k,b,be,p,c,ga,pp,d,de,kp)))
- + DS(I1;I2;-K,(TreeS(I1,I2,I3,I4,K,a,al,k,b,be,p,c,ga,pp,d,de,kp)))
- + DS(I1;I3;-L,(TreeU(I1,I2,I3,I4,L,a,al,k,b,be,p,c,ga,pp,d,de,kp)))
-
- + VE4(I1,I2,I3,I4,*,a,al,k,*,b,be,p,*,c,ga,pp,*,d,de,kp)
-
- Id,TreeS(I1~,I2~,I3~,I4~,K1~,a~,al~,k~,b~,be~,p~,c~,ga~,pp~,d~,de~,kp~)=
- VE3(I1,I2,-K1,*,a,al,k,*,b,be,p,*,l1,ka,-qs)*
- VE3(I3,I4,K1,*,c,ga,-pp,*,d,de,-kp,*,l2,kap,qs)*
- PROP(K1,-K1,*,l1,ka,qs,*,l2,kap,-qs)
- Al,TreeT(I1~,I2~,I3~,I4~,K1~,a~,al~,k~,b~,be~,p~,c~,ga~,pp~,d~,de~,kp~)=
- VE3(I1,I4,-K1,*,a,al,k,*,d,de,-kp,*,l1,ka,-qt)*
- VE3(I2,I3,K1,*,b,be,p,*,c,ga,-pp,*,l2,kap,qt)*
- PROP(K1,-K1,*,l1,ka,qt,*,l2,kap,-qt)
- Al,TreeU(I1~,I2~,I3~,I4~,K1~,a~,al~,k~,b~,be~,p~,c~,ga~,pp~,d~,de~,kp~)=
- VE3(I1,I3,-K1,*,a,al,k,*,c,ga,-pp,*,l1,ka,-qu)*
- VE3(I2,I4,K1,*,b,be,p,*,d,de,-kp,*,l2,kap,qu)*
- PROP(K1,-K1,*,l1,ka,qu,*,l2,kap,-qu)
-
- Id,Anti,TAP
-
- Id,Compo,<X>,VE4,VE3,PROP
- Id,VE4(FF~,l1~,al~,k~,l2~,be~,p~,l3~,ga~,pp~,l4~,la~,kp~)=
- FF(l1,al,k,l2,be,p,l3,ga,pp,l4,la,kp)
- Al,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
-
- Id,kp(al~)=p(al)+k(al)-pp(al)
- Al,Dotpr,kp(al~)=p(al)+k(al)-pp(al)
- *yep
- Id,qt(al~)=-p(al)+pp(al)
- Al,Dotpr,qt(al~)=-p(al)+pp(al)
- Id,qs(al~)=p(al)+k(al)
- Al,Dotpr,qs(al~)=p(al)+k(al)
- Id,qu(al~)=k(al)-pp(al)
- Al,Dotpr,qu(al~)=k(al)-pp(al)
- C Id,pDp=-M^2
- C Al,kDk=-M^2
- C Al,ppDpp=-M^2
- Id,Epfred
- *yep
- C s = - (p+k)^2 = -pDp - 2*pDk - kDk
- t = - (p-pp)^2 = - pDp + 2*pDpp - ppDpp
- u = - (k-pp)^2 = - kDk + 2*kDpp - ppDpp
- s + t + u = - kDk - pDp - ppDpp - kpDkp = 4*M^2
-
- Id,pDk =-0.5*s-0.5*pDp-0.5*kDk
- Al,pDpp= 0.5*t+0.5*pDp+0.5*ppDpp
- Al,kDpp= 0.5*u+0.5*kDk+0.5*ppDpp
- C Id,pDp=-M^2
- C Al,kDk=-M^2
- C Al,ppDpp=-M^2
- *yep
- Id,NOM(-qs,m)= 1/m^2 + s/m^4 + s^2/m^4*NOM(-qs,m)
- Al,NOM(-qt,m)= 1/m^2 + t/m^4 + t^2/m^4*NOM(-qt,m)
- Al,NOM(-qu,m)= 1/m^2 + u/m^4 + u^2/m^4*NOM(-qu,m)
- *yep
- Id,u = - s - t - kDk - pDp - ppDpp - kpDkp
- IF D(a,c)
- Id,t = - s - u - kDk - pDp - ppDpp - kpDkp
- ENDIF
- Id,NOM(-qs,M)=-1/s*(1+M^2/s+M^4/s^2)
- Al,NOM(-qt,M)=-1/t*(1+M^2/t+M^4/t^2)
- Al,NOM(-qu,M)=-1/u*(1+M^2/u+M^4/u^2)
- *yep
- IF s
- Id,3,s^n~*u^-2 = s^(n-1)*(- t - u + 4*M^2)/u^2
- ENDIF
- Id,Count,2,s,2,t,2,u,2,NOM,2,kl,1,m,20
- *yep
- IF s
- Id,3,s^n~*u^-1 = s^(n-1)*(- t - u + 4*M^2)/u
- ENDIF
- Id,Count,2,s,2,t,2,u,2,NOM,-2,m,20
- *yep
- Id,t^3*u^-1=t^2*(- s - u + 4*M^2)/u
- Id,Count,2,s,2,t,2,u,2,NOM,-2,m,20
- *yep
- C Id,u*s^-1 = ( - s - t + 4*M^2)/s
- Id,u= - s -t + 4*M^2
- Id,Count,2,s,2,t,2,u,2,NOM,-2,m,20
- *yep
- Id,NOM(-qs,m)= 1/m^2*( 1 + s/m^2 + s^2/m^4)
- Al,NOM(-qt,m)= 1/m^2*( 1 + t/m^2 + t^2/m^4)
- Al,NOM(-qu,m)= 1/m^2*( 1 + u/m^2 + u^2/m^4)
- Id,u= - s -t + 4*M^2
- Id,Count,2,s,2,t,2,u,2,NOM,-2,m,20
- *end
-
- C WW-scattering 5. One loop diagrams, two external lines.
-
- P ninput
-
- A N,N_,M,M2,m,m2,n,n1,n2,n3,n4,Fact,Nom,Nohm,Shi,LogM2,Logm2
- F Log,Fq,Tad,Fxx,Two
-
- Read WWb.e
-
- VERT{}
-
- ETE1{}
-
- C q1 = q+p
- q2 = q+p+pp
- q3 = q-k
- q4 = q-k-pp
- q5 = q-k-p
- q6 = q+pp
- qu = k+pp
- qs = q-k-p
- qt =
-
- V q,q1,q2,q3,q4,q5,q6,qs,qu,qt
-
- I al=N,be=N,la=N,de=N,ga=N,la=N
-
- I a=3,b=3,c=3,d=3
-
- X dede(al,be,ga,de)=D(al,be)*D(ga,de)+D(al,ga)*D(be,de)+D(al,de)*D(be,ga)
-
- C n1: -2 for every factor 1/(q^2+m^2)
- n2: number of factors m
- n3: degree of divergence with respect to integration variable q not
- counting n1 types. Integral is convergent if n3+4 < 0.
-
- X Fdiv(n1,n2,n3)= DT(-n3-4)*DT(n1+n2) + DT(n3+4-1)*DT(n1+n2+4+n3)
-
- C Series expansion for { Nohm/(1-x*Nohm) }^n4
- C
- X Exp(n1,n2,n3,x,n4) =
- DT(-n3-4)*Nohm^n4*DS(J,0,n1+n2,(DB(n4+J-1,J)*x^J*Nohm^J))
- + DT(n3+4-1)*Nohm^n4*DS(K,0,n1+n2+4+n3,(DB(n4+K-1,K)*x^K*Nohm^K))
-
- BLOCK MASS{}
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Al,pDk=0.5*M^2
- Al,kDpp=0.5*M^2
- Al,pDpp=0.5*M^2
- ENDBLOCK
-
- BDELETE COUNT
- BDELETE HCOUNT
- BDELETE SHIFT
- BDELETE STINT
-
- BLOCK COUNT{}
- Al,NOM(q~,m)=Fact*NOM(q,m)
- Id,Count,Fxx,Nohm,-2,Fact,-2 : m,1,[m2-M2],2,m2,2
- : q,1,Fact,2,NOM,-2,Nom,-2,Two,-4,Three,-6
- : Nohm,1
- Al,Fact=1
- ENDBLOCK
-
- BLOCK HCOUNT{}
- C Count behaviour with respect to m for large m.
- Eliminate if zero in that limit.
- IF Nohm
- AND NOT Ztag
- COUNT{}
- Id,Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)
- ELSE
- Id,Count,0,m,1,[m2-M2],2,Three,10,DLP,10,Ztag,10
- ENDIF
- ENDBLOCK
-
- BLOCK SHIFT{}
- IF Shi^1
- Al,qDq=qDq-2*qDp+pDp
- Al,q(al~)=q(al)-p(al)
- Al,Dotpr,q(al~)=q(al)-p(al)
- ENDIF
- IF Shi^3
- Al,qDq=qDq+2*qDk+kDk
- Al,q(al~)=q(al)+k(al)
- Al,Dotpr,q(al~)=q(al)+k(al)
- ENDIF
- IF Shi^6
- Al,qDq=qDq-2*qDpp+ppDpp
- Al,q(al~)=q(al)-pp(al)
- Al,Dotpr,q(al~)=q(al)-pp(al)
- ENDIF
-
- IF NOT Nohm
- Id,Shi=1
- ENDIF
-
- *yep
-
- C Working out of shifted 1/(q^2+m^2)^n
-
- IF Nohm^n~*Shi^l~
- COUNT{}
- Al,Nohm=1
-
- Id,Shi^1*Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(2*qDp-pDp),n4)
- Al,Shi^3*Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(-2*qDk-kDk),n4)
- Al,Shi^6*Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(2*qDpp-ppDpp),n4)
- ENDIF
-
- ENDBLOCK
-
- BLOCK STINT{}
- C Standard integrals.
-
- C Type Fn = 1/(q^2+M^2)^n
- Gn = q(mu)*q(nu)*Fn (exclusive D(mu,nu))
- Hn = q(mu)*q(nu)*q(al)*q(be)*Fn (exclusive D*D etc part).
-
- Id,F(1,m2~) = 2*i*Pi^2*m2/N_ + i*Pi^2*m2*(-1+Log(m2))
- Al,F(2,m2~) = - 2*i*Pi^2/N_ - i*Pi^2*Log(m2)
- Al,F(3,m2~) = 0.5*i*Pi^2/m2
- Al,F(4,m2~) = i*Pi^2/6/m2^2
- Al,F(5,m2~) = 1/12*i*Pi^2*m2^-3
- Al,F(6,m2~) = 1/20*i*Pi^2*m2^-4
- Al,F(7,m2~) = 1/30*i*Pi^2*m2^-5
-
- Id,G(1,m2~) = - 0.5*i*Pi^2*m2^2/N_ + 3/8*i*Pi^2*m2^2
- - 0.25*i*Pi^2*m2^2*Log(m2)
-
- Al,G(2,m2~) = i*Pi^2 * ( - 1/2*m2 + m2*N_^-1 )
- + 0.5*m2*Log(m2)*i*Pi^2
-
- Al,G(3,m2~) = i*Pi^2 * ( - 1/2*N_^-1 )
- - 1/4*Log(m2)*i*Pi^2
-
- Al,G(4,m2~) = 1/12*i*Pi^2*m2^-1
-
- Al,G(5,m2~) = 1/48*i*Pi^2*m2^-2
-
- Al,G(6,m2~) = 1/120*i*Pi^2*m2^-3
-
- Al,G(7,m2~) = 1/240*i*Pi^2*m2^-4
-
- Id,H(1,m2~) = 1/12*i*Pi^2*m2^3/N_ - 11/144*i*Pi^2*m2^3
- + 1/24*i*Pi^2*m2^3*Log(m2)
-
- Al,H(2,m2~) = i*Pi^2 * ( 3/16*m2^2 - 1/4*m2^2*N_^-1 )
- - 1/8*Log(m2)*i*Pi^2*m2^2
-
- Al,H(3,m2~) = i*Pi^2 * ( - 1/8*m2 + 1/4*m2*N_^-1 )
- + 1/8*Log(m2)*i*Pi^2 *m2
-
- Al,H(4,m2~) = - 1/12*i*Pi^2*N_^-1
- - 1/24*Log(m2)*i*Pi^2
-
- Al,H(5,m2~) = i*Pi^2/96/m2
-
- Al,H(6,m2~) = 1/480*i*Pi^2*m2^-2
-
- Al,H(7,m2~) = 1/1200*i*Pi^2*m2^-3
-
- ENDBLOCK
-
- *fix
- I mu,nu
- I m1=N,m0=N,m3=N,m4=N,m5=N,m6=N,m7=N,m8=N
- V k,p,pp,kp,q0
-
- BLOCK WORK{}
- Id,Self(I1~,I2~)=
- DS(I1;J2;-J1;Sym;J2;-J1;TAP,(DIB(I1,J1,J2,I2)
- *DC("F,TFE,-1,J1,J2) ))
-
- + DS(I1;J3;-J3;I2;Sym;J3,-J3;TAP,(DIC(I1,J3,I2) ))
-
- + CONTR(I1,I2)*DLP
-
- C + DS(I1;I2;-J4;TAP,{ DS(J4;J5;-J5;Sym;J5;-J5,TAP,{DIT(I1,J4,J5,I2)
- *DC("F,TFE,-1,J5) } ) } )
-
- Id,Anti,TAP
-
- Id,DIB(I1~,K1~,K2~,I2~)=
- VE3(I1,K2,-K1,*,a,al,p,*,l4,m4,q,*,l1,m1,-q1)*
- VE3(K1,I2,-K2,*,l2,m0,q1,*,b,be,-p,*,l3,m3,-q)*
- PROP(K1,-K1,*,l1,m1,q1,*,l2,m0,-q1)*
- PROP(K2,-K2,*,l3,m3,q,*,l4,m4,-q)
- Al,DIC(I1~,K1~,I2~)=
- VE4(I1,K1,-K1,I2,*,a,al,p,*,l1,m1,-q,*,l2,m0,q,*,b,be,-p)*
- PROP(K1,-K1,*,l1,m1,q,*,l2,m0,-q)
-
- Al,DIT(I1~,K1~,K2~,I2~) = Tad*
- VE3(I1,I2,-K1,*,a,al,p,*,b,be,-p,*,l1,m1,-q0)*
- PROP(K1,-K1,*,l1,m1,q0,*,l2,m0,-q0)*
- VE3(K1,K2,-K2,*,l2,m0,q0,*,l3,m3,-q,*,l4,m4,q)*
- PROP(K2,-K2,*,l3,m3,q,*,l4,m4,-q)
-
- Al,CONTR(I1~,I2~)=CONT(I1,I2,"N,*,a,al,p,*,b,be,-p,*,c,ga,q0)
-
- Id,Compo,<X>,VE4,VE3,PROP,CONT
-
- Id,VE4(FF~,l1~,al~,k~,l2~,be~,p~,l3~,ga~,pp~,l4~,la~,kp~)=
- FF(l1,al,k,l2,be,p,l3,ga,pp,l4,la,kp)
- Al,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
-
- Id,Even,NOM,1
- Al,Commu,NOM
-
- *yep
- Id,q0(al~)=0
- Al,Dotpr,q0(al~)=0
- Al,NOM(q0,M~) = 1/M^2
- Id,q1Dq1=qDq+2*pDq+pDp
- Al,q1(al~)=q(al)+p(al)
- Al,Dotpr,q1(al~)=q(al)+p(al)
- Id,qDq*NOM(q,M~)=1-M^2*NOM(q,M)
- Id,Adiso,qDp^n~*NOM(q,M~)*NOM(q1,m~)=-0.5*qDp^(n-1)*
- {NOM(q1,m) - NOM(q,M) + (pDp-M^2+m^2)*NOM(q,M)*NOM(q1,m)}
- Id,Commu,NOM
- Id,Epfred
- B Nohm,Nom,i,Pi,Ztag,Xetid
- *yep
-
- Id,NOM(q,m)=Nohm
-
- IF NOM(q~,m)
- AND NOT Ztag
- COUNT{}
- Id,Adiso,Fxx(n1~,n2~,n3~,n4~)*NOM(q1,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(-2*qDp-pDp),1)
- ENDIF
-
- HCOUNT{}
- *yep
-
- IF NOM(q,M)=Nom
- AND Nohm
- Id,Nohm^n~=a1^-n
- Al,Nom^n~=a2^-n
- Id,Ratio,a2,a1,[m2-M2]
- Id,a1^n~=Nohm^-n
- Al,a2^n~=Nom^-n
- ENDIF
-
- Id,Nom*NOM(q1~,M)= Two(q,q1,M)
- Al,Nohm*NOM(q1~,m)= Two(q,q1,m)
- Id,NOM(q1,M)=Nom*Shi
- SHIFT{}
-
- IF Nohm^n~*Nom^l~
- Id,Nohm^n~=a1^-n
- Al,Nom^n~=a2^-n
- Id,Ratio,a2,a1,[m2-M2]
- Id,a1^n~=Nohm^-n
- Al,a2^n~=Nom^-n
- ENDIF
- *yep
-
- IF Nohm
- OR Nom
- Id,All,q,N,Fq
- ENDIF
-
- Id,Fq(al~)=0
- Al,Fq(al~,be~,ga~)=0
- Al,Fq(al~,be~,ga~,de~,la~)=0
- Al,Fq(al~,be~,ga~,de~,la~,a~,b~)=0
-
- *yep
-
- Id,Fq(al~,be~,ga~,de~)*Nom^l~ = dede(al,be,ga,de)*H(l,M2)
- Al,Fq(al~,be~)*Nom^l~ = D(al,be)*G(l,M2)
- Al,Nom^n~ = F(n,M2)
- Id,Fq(al~,be~,ga~,de~)*Nohm^l~ = dede(al,be,ga,de)*H(l,m2)
- Al,Fq(al~,be~)*Nohm^l~ = D(al,be)*G(l,m2)
- Al,Nohm^l~ = F(l,m2)
-
- STINT{}
-
- Id,Multi,M2^n~=M^(2*n)
- Al,Multi,m2^n~=m^(2*n)
-
- *yep
-
- IF NOT Two(q~,q1~,M~)
- Id,Count,0,m,1,m2,2,[m2-M2],2,DLP,10
- Id,Count,x,m2,2,m,1,DLP,10
- ..IF x
- ..Id,x^n1~*[m2-M2]^n~=m2^n*DS(K,0,n+(n1+1)/2,(DB(-n+K-1,K)*M2^K*m2^-K))
- ..Id,m2^n~=m^(2*n)
- ..Al,M2^n~=M^(2*n)
- ..ELSE
- ..Id,[m2-M2]^n~=m^(2*n)
- ..ENDIF
- Id,Count,0,m2,2,m,1,DLP,10,Ztag,10
- Al,x=1
- ENDIF
-
- IF Two(q~,q1~,M~)
- Id,All,q,N,Fq,"F_
- Id,Adiso,Two(q,q1~,M~)*Fq(al~,be~)=B21(pDp,M,M)*Fxx(q1,al,be)
- +B22(pDp,M,M)*D(al,be)
- Al,Adiso,Two(q,q1~,M~)*Fq(al~)=B1(pDp,M,M)*Fxx(q1,al)
- Al,Two(q,q1~,M~)=B0(pDp,M,M)
- Id,Fxx(q1,al~)=p(al)
- Id,Fxx(q1,al~,be~)=p(al)*p(be)
- ENDIF
-
- Id,B22(u~,M~,m~)=(-0.5*F1(m)+M**2*B0(u,M,m)
- -0.5*(u+m^2-M**2)*B1(u,M,m))/[1-N]
- Id,B21(u~,M~,m~)=-((0.5*N-1)*F1(m)
- -0.5*N*(u+m^2-M**2)*B1(u,M,m)
- +M**2*B0(u,M,m) )/u/[1-N]
- Id,B1(u~,M~,m~)= (0.5*F1(M)-0.5*F1(m)
- -0.5*(u+m^2-M**2)*B0(u,M,m) )/u
-
- Al,F1(M~) = 2*i*Pi^2*M^2/N_ + i*Pi^2*M^2*(-1+LogM2)
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_=0
- Id,N=4
-
- IF Ztag
- Id,B0(u~,M,M)=i*Pi^2*(Logm2-LogM2-2)*(u+m^2)/m^2
- -2*i*Pi^2/N_-i*Pi^2*(Logm2-2)
- Al,B0(u~,m,m)=-i*Pi^2*[Pi/Sqrt(3)-2]*(u+m^2)/m^2
- -2*i*Pi^2/N_- i*Pi^2*(Logm2+[Pi/Sqrt(3)-2])
- ELSE
- Id,B0(u~,M,M)= -2*i*Pi^2/N_ - i*Pi^2*LogM2 + u*BB0F(u,M,M)/M^2
- ENDIF
-
- Id,Log(m2)=Logm2
- Al,Log(M2)=LogM2
-
- Al,CONT(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
-
- Id,Count,1,m,1,N_,-1,Logm2,1,DLP,10,Ztag,10,Xetid,10
- *yep
- ETE1{}
- P output
- *yep
- Id,DLP=-1
- Id,Count,1,m,1,N_,-10,Logm2,1,DLP,10,Ztag,10,Xetid,10
- Id,Ztag=1
- ENDBLOCK
-
- Z TADP=DS("Z;J1;-J1;Sym;J1;-J1,(DIT("Z,J1)*DC("F,TFE,-1,J1) ))
- + DLP*NNZ(b,be,p,c,ga,q,a,al,q0)
- + Xetid*Et
-
- Id,DIT(K1~,K2~)=
- VE3(K1,K2,-K2,*,a,al,q0,*,l3,m3,-q,*,l4,m4,q)*
- PROP(K2,-K2,*,l3,m3,q,*,l4,m4,-q)
- Id,Compo,<X>,VE4,VE3,PROP
-
- Id,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
-
- Id,Even,NOM,1
- Al,Commu,NOM
-
- *yep
- Id,q0(al~)=0
- Al,Dotpr,q0(al~)=0
- Id,Commu,NOM
- Id,Epfred
-
- B Nohm,Nom,i,Pi,DEL,Xetid
-
- Id,NOM(q~,M)=F(1,M2)
- Al,NOM(q~,m)=F(1,m2)
- Id,F(1,m2~) = 2*i*Pi^2*m2/N_ + i*Pi^2*m2*(-1+Log(m2))
-
- Id,Multi,M2^n~=M^(2*n)
- Al,Multi,m2^n~=m^(2*n)
-
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_=0
- Id,N=4
-
- Id,Log(m2)=Logm2
- Al,Log(M2)=LogM2
- P output
- *yep
-
- ETE1{}
- Id,DLP=-1
- *next
-
- Z SelfWW = Self("W,"W)
- C - {2*M^2*Ew + 2*M^2*E1 + 2*pDp*Ew}*D(a,b)*D(al,be)*DLP
- + 2*p(al)*p(be)*D(a,b)*Ew*DLP
- WORK{}
- *next
-
- Z SelfFF = Self("F,"F)
- C - 2*pDp*Eh*D(a,b)*DLP
- - 1/2*m^2*Et*D(a,b)*DLP
- WORK{}
- *next
-
- Z SelfWF = Self("W,"F)
- C + M*{Ew+Eh+E1}*D(a,b)*(-i*p(al))*DLP
- WORK{}
- *next
- Z SelfZZ = Self("Z,"Z)*Ztag
- C + m^2*{-2*Eh-1/2*Et+2*E2-2*E1}*DLP
- - 2*pDp*Eh*DLP
- WORK{}
- P output
- *yep
- Id,pDp=-m^2
- Id,Count,1,m,1,N_,-10,Logm2,1
- *end
-
- C WW-scattering 6. One loop diagrams, three external lines.
-
- P ninput
-
- A N,N_,M,M2,m,m2,n,n1,n2,n3,n4,Fact,Nom,Nohm,Shi,LogM2,Logm2
- F Fxx,Two,Three,Fq
-
- Read WWb.e
-
- VERT{}
-
- C q1 = q+p
- q2 = q+p+pp
- q3 = q-k
- q4 = q-k-pp
- q5 = q-k-p
- q6 = q+pp
- q7 = q+kp
- qu = k+pp
- qs = q-k-p
- qt =
-
- V q,q1,q2,q3,q4,q5,q6,qs,qu,qt
-
- I al=N,be=N,la=N,de=N,ga=N,la=N
-
- I a=3,b=3,c=3,d=3
-
- X dede(al,be,ga,de)=D(al,be)*D(ga,de)+D(al,ga)*D(be,de)+D(al,de)*D(be,ga)
-
- C n1: -2 for every factor 1/(q^2+m^2)
- n2: number of factors m
- n3: degree of divergence with respect to integration variable q not
- counting n1 types. Integral is convergent if n3+4 < 0.
-
- X Fdiv(n1,n2,n3)= DT(-n3-4)*DT(n1+n2) + DT(n3+4-1)*DT(n1+n2+4+n3)
-
- C Series expansion for { Nohm/(1-x*Nohm) }^n4
- C
- X Exp(n1,n2,n3,x,n4) =
- DT(-n3-4)*Nohm^n4*DS(J,0,n1+n2,(DB(n4+J-1,J)*x^J*Nohm^J))
- + DT(n3+4-1)*Nohm^n4*DS(K,0,n1+n2+4+n3,(DB(n4+K-1,K)*x^K*Nohm^K))
-
- BLOCK MASS{}
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Al,pDk=0.5*M^2
- Al,kDpp=0.5*M^2
- Al,pDpp=0.5*M^2
- ENDBLOCK
-
- BDELETE COUNT
- BDELETE HCOUNT
- BDELETE SHIFT
- BDELETE STINT
-
- BLOCK COUNT{}
- Al,NOM(q~,m)=Fact*NOM(q,m)
- Id,Count,Fxx,Nohm,-2,Fact,-2 : m,1,[m2-M2],2,m2,2
- : q,1,Fact,2,NOM,-2,Nom,-2,Two,-4,Three,-6
- : Nohm,1
- Al,Fact=1
- ENDBLOCK
-
- BLOCK HCOUNT{}
- C Count behaviour with respect to m for large m.
- Eliminate if zero in that limit.
- IF Nohm
- COUNT{}
- Id,Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)
- ELSE
- Id,Count,0,m,1,[m2-M2],2,Three,10
- ENDIF
- ENDBLOCK
-
- BLOCK SHIFT{}
- IF Shi^1
- Al,qDq=qDq-2*qDp+pDp
- Al,q(al~)=q(al)-p(al)
- Al,Dotpr,q(al~)=q(al)-p(al)
- ENDIF
- IF Shi^3
- Al,qDq=qDq+2*qDk+kDk
- Al,q(al~)=q(al)+k(al)
- Al,Dotpr,q(al~)=q(al)+k(al)
- ENDIF
- IF Shi^6
- Al,qDq=qDq-2*qDpp+ppDpp
- Al,q(al~)=q(al)-pp(al)
- Al,Dotpr,q(al~)=q(al)-pp(al)
- ENDIF
-
- IF NOT Nohm
- Id,Shi=1
- ENDIF
-
- *yep
-
- C Working out of shifted 1/(q^2+m^2)^n
-
- IF Nohm^n~*Shi^l~
- COUNT{}
- Al,Nohm=1
-
- Id,Shi^1*Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(2*qDp-pDp),n4)
- Al,Shi^3*Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(-2*qDk-kDk),n4)
- Al,Shi^6*Fxx(n1~,n2~,n3~,n4~)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(2*qDpp-ppDpp),n4)
- ENDIF
-
- ENDBLOCK
-
- BLOCK STINT{}
- C Standard integrals.
-
- C Type Fn = 1/(q^2+M^2)^n
-
- Id,F(1,m2~) = 2*i*Pi^2*m2/N_ + i*Pi^2*m2*(-1+Log(m2))
- Al,F(2,m2~) = - 2*i*Pi^2/N_ - i*Pi^2*Log(m2)
- Al,F(3,m2~) = 0.5*i*Pi^2/m2
- Al,F(4,m2~) = i*Pi^2/6/m2^2
- Al,F(5,m2~) = 1/12*i*Pi^2*m2^-3
- Al,F(6,m2~) = 1/20*i*Pi^2*m2^-4
- Al,F(7,m2~) = 1/30*i*Pi^2*m2^-5
-
- Id,G(1,m2~) = - 0.5*i*Pi^2*m2^2/N_ + 3/8*i*Pi^2*m2^2
- - 0.25*i*Pi^2*m2^2*Log(m2)
-
- Al,G(2,m2~) = i*Pi^2 * ( - 1/2*m2 + m2*N_^-1 )
- + 0.5*m2*Log(m2)*i*Pi^2
-
- Al,G(3,m2~) = i*Pi^2 * ( - 1/2*N_^-1 )
- - 1/4*Log(m2)*i*Pi^2
-
- Al,G(4,m2~) = 1/12*i*Pi^2*m2^-1
-
- Al,G(5,m2~) = 1/48*i*Pi^2*m2^-2
-
- Al,G(6,m2~) = 1/120*i*Pi^2*m2^-3
-
- Al,G(7,m2~) = 1/240*i*Pi^2*m2^-4
-
- Id,H(1,m2~) = 1/12*i*Pi^2*m2^3/N_ - 11/144*i*Pi^2*m2^3
- + 1/24*i*Pi^2*m2^3*Log(m2)
-
- Al,H(2,m2~) = i*Pi^2 * ( 3/16*m2^2 - 1/4*m2^2*N_^-1 )
- - 1/8*Log(m2)*i*Pi^2*m2^2
-
- Al,H(3,m2~) = i*Pi^2 * ( - 1/8*m2 + 1/4*m2*N_^-1 )
- + 1/8*Log(m2)*i*Pi^2 *m2
-
- Al,H(4,m2~) = - 1/12*i*Pi^2*N_^-1
- - 1/24*Log(m2)*i*Pi^2
-
- Al,H(5,m2~) = i*Pi^2/96/m2
-
- Al,H(6,m2~) = 1/480*i*Pi^2*m2^-2
-
- Al,H(7,m2~) = 1/1200*i*Pi^2*m2^-3
-
- ENDBLOCK
-
- BLOCK COEF{}
- C Generated with program BCij.e
-
- Id,BB0=i*Pi^2*( - LogM2 - 2*N_^-1 - [Pi/Sqrt(3)-2] )
- Al,BB1=i*Pi^2*( 1/2*LogM2 + N_^-1 + 1/2*[Pi/Sqrt(3)-2] )
- Al,BB21=i*Pi^2*( 1/18 - 1/3*LogM2 - 2/3*N_^-1 )
- Al,BB22=i*Pi^2*M^2*( - 4/9 + 5/12*LogM2 + 5/6*N_^-1 + 1/4*[Pi/Sqrt(3)-2] )
-
- Id,C11= - 2/3*C0
- Al,C12= - 1/3*C0
- Al,C21= 1/3*i*M^-2*Pi^2
- Al,C22= 1/3*i*M^-2*Pi^2 - 1/3*C0
- Al,C23= 1/6*i*M^-2*Pi^2
- Al,C24= - 1/2*i*N_^-1*Pi^2 + 1/4*i*Pi^2 - 1/4*i*Pi^2*LogM2 - 1/4*i*Pi^2
- *[Pi/Sqrt(3)-2] - 1/3*M^2*C0
- Al,C31= - 19/27*i*M^-2*Pi^2 - 2/9*i*M^-2*Pi^2*[Pi/Sqrt(3)-2]
- + 16/27*C0
- Al,C32= - 8/27*i*M^-2*Pi^2 + 2/9*i*M^-2*Pi^2*[Pi/Sqrt(3)-2]
- + 11/27*C0
- Al,C33= - 19/54*i*M^-2*Pi^2 - 1/9*i*M^-2*Pi^2*[Pi/Sqrt(3)-2]
- + 8/27*C0
- Al,C34= - 17/54*i*M^-2*Pi^2 + 1/9*i*M^-2*Pi^2*[Pi/Sqrt(3)-2]
- + 10/27*C0
- Al,C35= 1/3*i*N_^-1*Pi^2 - 1/6*i*Pi^2 + 1/6*i*Pi^2*LogM2 + 1/6*i*Pi^2
- *[Pi/Sqrt(3)-2] + 2/9*M^2*C0
- Al,C36= 1/6*i*N_^-1*Pi^2 - 1/12*i*Pi^2 + 1/12*i*Pi^2*LogM2
- + 1/12*i*Pi^2*[Pi/Sqrt(3)-2] + 1/9*M^2*C0
- Id,C0=i*Pi^2*CC0
- ENDBLOCK
-
- *fix
-
- I mu,nu
- I m1=N,m0=N,m3=N,m4=N,m5=N,m6=N,m7=N,m8=N,m9=N
- V k,p,pp
-
- BLOCK WORK{TADP}
- Id,VERT(K1~,K2~,K3~)=
- DS(K1;J3;-J1;TAP,(DS(K2;J1;-J2;TAP,(
- DIB(K1,K2,K3,J1,J2,J3)*DC("F,TFE,-1,J1,J2,J3) ))))
-
- +DS(K1;K2;-J4;J5;Sym;-J4;J5;TAP,(VIR1(K1,K2,K3,J4,J5) ))
-
- +DS(K2;K3;J6;-J7;Sym;J6;-J7;TAP,(VIR2(K1,K2,K3,J6,J7) ))
-
- +DS(K1;K3;-J8;J9;Sym;-J8;J9;TAP,(VIR3(K1,K2,K3,J8,J9) ))
-
-
- Id,DIB(K1~,K2~,K3~,J1~,J2~,J3~)=
- VE3(K1,-J1,J3,*,a,al,k,*,l1,m1,-q,*,l6,m6,q3)*
- VE3(K2,J1,-J2,*,b,be,p,*,l2,m0,q,*,l3,m3,-q1)*
- VE3(K3,J2,-J3,*,c,ga,pp,*,l4,m4,q1,*,l5,m5,-q3)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q1,*,l4,m4,-q1)*
- PROP(J3,-J3,*,l5,m5,q3,*,l6,m6,-q3)
-
- Al,VIR1(K1~,K2~,K3~,J1~,J2~)=
- VE4(K1,K2,-J1,J2,*,a,al,k,*,b,be,p,*,l1,m1,-q,*,l4,m4,q6)*
- VE3(K3,J1,-J2,*,c,ga,pp,*,l2,m0,q,*,l3,m3,-q6)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q6,*,l4,m4,-q6)
-
- Al,VIR2(K1~,K2~,K3~,J1~,J2~)=
- VE4(K2,K3,J1,-J2,*,b,be,p,*,c,ga,pp,*,l2,m0,q,*,l3,m3,-q3)*
- VE3(K1,-J1,J2,*,a,al,k,*,l1,m1,-q,*,l4,m4,q3)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q3,*,l4,m4,-q3)
-
- Al,VIR3(K1~,K2~,K3~,J1~,J2~)=
- VE4(K1,K3,-J1,J2,*,a,al,k,*,c,ga,pp,*,l1,m1,-q,*,l4,m4,q1)*
- VE3(K2,J1,-J2,*,b,be,p,*,l2,m0,q,*,l3,m3,-q1)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q1,*,l4,m4,-q1)
-
- Id,Anti,TAP
-
- Id,Compo,<X>,VE4,VE3,PROP
- Id,VE4(FF~,l1~,al~,k~,l2~,be~,p~,l3~,ga~,pp~,l4~,la~,kp~)=
- FF(l1,al,k,l2,be,p,l3,ga,pp,l4,la,kp)
- Al,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
-
- Id,Even,NOM,1
- Id,Commu,NOM
-
- C q1 = q+p
- q3 = q+p+pp = q-k
- q6 = q+pp
-
- Id,q1Dq1=qDq+pDp+2*qDp
- Al,q3Dq3=qDq+kDk-2*qDk
- Al,q6Dq6=qDq+ppDpp+2*qDpp
- Id,q1(al~)=q(al)+p(al)
- Al,Dotpr,q1(al~)=q(al)+p(al)
- Id,q3(al~)=q(al)-k(al)
- Al,Dotpr,q3(al~)=q(al)-k(al)
- Id,q6(al~)=q(al)+pp(al)
- Al,Dotpr,q6(al~)=q(al)+pp(al)
-
- Id,qDq*NOM(q,M~)=1-M^2*NOM(q,M)
- Id,Adiso,qDp^n~*NOM(q,M~)*NOM(q1,m~)=-0.5*qDp^(n-1)*
- {NOM(q1,m) - NOM(q,M) + (pDp-M^2+m^2)*NOM(q,M)*NOM(q1,m)}
- Id,Adiso,qDk^n~*NOM(q,M~)*NOM(q3,m~)=0.5*qDk^(n-1)*
- {NOM(q3,m) - NOM(q,M) + (kDk-M^2+m^2)*NOM(q,M)*NOM(q3,m)}
- Id,Adiso,qDpp^n~*NOM(q,M~)*NOM(q6,m~)=-0.5*qDpp^(n-1)*
- {NOM(q6,m) - NOM(q,M) + (ppDpp-M^2+m^2)*NOM(q,M)*NOM(q6,m)}
-
- Id,Commu,NOM
- Id,Epfred
- Id,ppDpp=kDk+pDp+2*kDp
- Id,pp(al~)=-k(al)-p(al)
- Al,Dotpr,pp(al~)=-k(al)-p(al)
-
- Id,NOM(q1~,M)*NOM(q3~,M)*NOM(q6~,M)= Three(M,q1,q3,q6)
-
- B Nohm,Nom,i,Pi,DEL
-
- *yep
-
- Id,NOM(q,m)=Nohm
-
- IF NOM(q~,m)
- COUNT{}
- Id,Adiso,Fxx(n1~,n2~,n3~,n4~)*NOM(q1,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(-2*qDp-pDp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~,n4~)*NOM(q3,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk-kDk),1)
- Al,Adiso,Fxx(n1~,n2~,n3~,n4~)*NOM(q6,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(-2*qDpp-ppDpp),1)
- ENDIF
-
- HCOUNT{}
- MASS{}
- *yep
-
- IF NOM(q~,m)
- COUNT{}
- Id,Adiso,Fxx(n1~,n2~,n3~,n4~)*NOM(q1,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(-2*qDp-pDp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~,n4~)*NOM(q3,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk-kDk),1)
- Al,Adiso,Fxx(n1~,n2~,n3~,n4~)*NOM(q6,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(-2*qDpp-ppDpp),1)
- ENDIF
-
- HCOUNT{}
- MASS{}
-
- IF NOM(q,M)=Nom
- AND Nohm
- Id,Nohm^n~=a1^-n
- Al,Nom^n~=a2^-n
- Id,Ratio,a2,a1,[m2-M2]
- Id,a1^n~=Nohm^-n
- Al,a2^n~=Nom^-n
- ENDIF
-
- Id,Nom*NOM(q1~,M)= Two(q,q1)
-
- *yep
-
- IF NOT NOM(q1,M)=Nom*Shi
- AND NOT NOM(q3,M)=Nom*Shi^3
- Al,NOM(q6,M)=Nom*Shi^6
- ENDIF
-
- *yep
-
- Id,Shi^1*NOM(q3,M)=NOM(q6,M)*Shi
-
- SHIFT{}
-
- *yep
-
- HCOUNT{}
- MASS{}
-
- IF Nohm^n~*Nom^l~
- Id,Nohm^n~=a1^-n
- Al,Nom^n~=a2^-n
- Id,Ratio,a2,a1,[m2-M2]
- Id,a1^n~=Nohm^-n
- Al,a2^n~=Nom^-n
- ENDIF
-
- Id,Nom*NOM(q1~,M)=Two(q,q1)
-
- *yep
-
- Id,NOM(q6,M)=Nom*Shi^6
-
- SHIFT{}
- HCOUNT{}
- MASS{}
-
- IF Nohm^n~*Nom^l~
- Id,Nohm^n~=a1^-n
- Al,Nom^n~=a2^-n
- Id,Ratio,a2,a1,[m2-M2]
- Id,a1^n~=Nohm^-n
- Al,a2^n~=Nom^-n
- ENDIF
-
- IF NOT Nohm
- AND NOT Three(m,q1~,q3~,q6~)
- Id,Count,0,m,1,[m2-M2],2,DLP,10
- ENDIF
-
- *yep
-
- IF Nohm
- OR Nom
- Id,All,q,N,Fq
- ENDIF
-
- Id,Fq(al~)=0
- Al,Fq(al~,be~,ga~)=0
- Al,Fq(al~,be~,ga~,de~,la~)=0
- Al,Fq(al~,be~,ga~,de~,la~,a~,b~)=0
-
- *yep
-
- Id,Fq(al~,be~,ga~,de~)*Nom^l~ = dede(al,be,ga,de)*H(l,M2)
- Al,Fq(al~,be~)*Nom^l~ = D(al,be)*G(l,M2)
- Al,Nom^n~ = F(n,M2)
- Id,Fq(al~,be~,ga~,de~)*Nohm^l~ = dede(al,be,ga,de)*H(l,m2)
- Al,Fq(al~,be~)*Nohm^l~ = D(al,be)*G(l,m2)
- Al,Nohm^l~ = F(l,m2)
-
- STINT{}
- MASS{}
-
- Id,Multi,M2^n~=M^(2*n)
- Al,Multi,m2^n~=m^(2*n)
-
- IF NOT Two(q~,M~)
- AND NOT Three(M~,q~,q1~,q2~)
- Id,Count,0,m,1,m2,2,[m2-M2],2
- Id,Count,x,m2,2,m,1
- ..IF x
- ..Id,x^n1~*[m2-M2]^n~=m2^n*DS(K,0,n+(n1+1)/2,(DB(-n+K-1,K)*M2^K*m2^-K))
- ..Id,m2^n~=m^(2*n)
- ..Al,M2^n~=M^(2*n)
- ..ELSE
- ..Id,[m2-M2]^n~=m^(2*n)
- ..ENDIF
- Id,Count,0,m2,2,m,1,DLP,10
- Al,x=1
- ENDIF
-
- Id,ppDpp=kDk+pDp+2*kDp
- Al,pp(al~)=-k(al)-p(al)
- Al,Dotpr,pp(al~)=-k(al)-p(al)
-
- Id,Log(m2)=Logm2
- Al,Log(M2)=LogM2
-
- IF Three(M~,q,q1,q3)=Fxx(M)
- Al,All,q,N,Fq,"F_
- Id,Adiso,Fxx(m~)*Fq(al~,be~,ga~)=
- p(al)*p(be)*p(ga)*C31
- + pp(al)*pp(be)*pp(ga)*C32
- + (pp(al)*p(be)*p(ga)+p(al)*pp(be)*p(ga)+p(al)*p(be)*pp(ga))*C33
- + (p(al)*pp(be)*pp(ga)+pp(al)*p(be)*pp(ga)+pp(al)*pp(be)*p(ga))*C34
- + (p(al)*D(be,ga)+p(be)*D(al,ga)+p(ga)*D(al,be))*C35
- + (pp(al)*D(be,ga)+pp(be)*D(al,ga)+pp(ga)*D(al,be))*C36
- Al,Adiso,Fxx(m~)*Fq(al~,be~)=
- p(al)*p(be)*C21
- + pp(al)*pp(be)*C22
- + (p(al)*pp(be)+pp(al)*p(be))*C23
- + D(al,be)*C24
- Al,Adiso,Fxx(m~)*Fq(al~)= p(al)*C11 + pp(al)*C12
- Al,Fxx(m~)=C0
- ENDIF
-
- IF Two(q~,q1~)
- Id,All,q,N,Fq,"F_
- Id,Adiso,Two(q,q1~)*Fq(al~,be~)=BB21*Fxx(q1,al,be)+BB22*D(al,be)
- Al,Adiso,Two(q,q1~)*Fq(al~)=BB1*Fxx(q1,al)
- Al,Two(q,q1~)=BB0
- Id,Fxx(q1,al~)=p(al)
- Al,Fxx(q3,al~)=-k(al)
- Al,Fxx(q6,al~)=-p(al)-k(al)
- Id,Fxx(q1,al~,be~)=p(al)*p(be)
- Al,Fxx(q3,al~,be~)=k(al)*k(be)
- Al,Fxx(q6,al~,be~)=(p(al)+k(al))*(p(be)+k(be))
- ENDIF
-
- *yep
-
- COEF{}
-
- Id,pp(al~)=-k(al)-p(al)
- MASS{}
- Id,N=N_+4
- Id,N_=0
- C Id,[Pi/Sqrt(3)-2]= - BB0F - LogM2
- *yep
- Id,Count,0,m,1,m2,2,[m2-M2],2,DLP,10
- Id,Count,x,m2,2,m,1
- ..IF x
- ..Id,x^n1~*[m2-M2]^n~=m2^n*DS(K,0,n+(n1+1)/2,(DB(-n+K-1,K)*M2^K*m2^-K))
- ..Id,m2^n~=m^(2*n)
- ..Al,M2^n~=M^(2*n)
- ..ELSE
- ..Id,[m2-M2]^n~=m^(2*n)
- ..ENDIF
- Id,Count,0,m2,2,m,1,DLP,10
- Al,x=1
-
- Id,Count,1,m,1,Logm2,1,N_,-1,DLP,10
-
- ETE1{}
- P output
- *yep
- Id,DLP=-1
-
- ENDBLOCK
-
- Z IWWW = VERT("W,"W,"W)
- + (Eg+3*Ew)*WWW(a,al,k,b,be,p,c,ga,pp)*DLP
- WORK{IWWW}
- *next
- Z IFFW = VERT("F,"F,"W)
- + (Eg+Ew+2*Eh)*FFW(a,al,k,b,be,p,c,ga,pp)*DLP
- WORK{IFFW}
- *next
- Z IFWZ = VERT("F,"W,"Z)
- + (Eg+Ew+2*Eh)*FWZ(a,al,k,b,be,p,c,ga,pp)*DLP
- WORK{IFWZ}
- *next
- Z IWWZ = VERT("W,"W,"Z)
- + (Eg+2*Ew+Eh+E1)*WWZ(a,al,k,b,be,p,c,ga,pp)*DLP
- WORK{IWWZ}
- *next
- Z IFFZ = VERT("F,"F,"Z)
- + (Eg+3*Eh-2*E2+E1)*FFZ(a,al,k,b,be,p,c,ga,pp)*DLP
- WORK{IFFZ}
- *next
- Z IZZZ = VERT("Z,"Z,"Z)
- + (Eg+3*Eh-2*E2+E1)*ZZZ(a,al,k,b,be,p,c,ga,pp)*DLP
- WORK{IZZZ}
- *end
-
- C WW-scattering 7. One loop Fi-Fi scattering, part 1. 33 sec.
- Result to file BoxFF1.
-
- C One loop diagrams.
- Four point function. FF scattering.
- Evaluated in the limit m^2 >> s,t,u >> M^2, where m = Higgs boson
- mass and M = W boson mass.
-
- C Terms in the output are labelled by A0, A1, A2, A3, and R, T for the
- reducible and tadpole types.
- The connection is:
- Rx: reducible diagrams (in u-channel, as A3).
- R1 type: One propagator.
- R5 type: Two propagators: selfenergy insertion.
- Diagrams marked with R1Z and R5Z are Z-exchange diagrams.
- Tx: tadpole types.
- A0: Box diagram, a,al,k and c,ga,pp in opposite corners.
- A1: Inverted Triangle diagram, a,al,k and c,ga,pp on 4-vertex.
- A2: Triangle diagram, a,al,k and c,ga, pp on triangle basis.
- A3: Bubble diagram, a,al,k and c,ga,pp on one end.
-
- P ninput
-
- C Work done:
- - Generate the diagrams.
- - Reduce as much as possible q ocurrences in the numerator.
- - Eliminate Higgs mass in terms containing at least one Higgs
- and one non-Higgs propagator. Cost: each m^2 gives one q.
-
- As it happens, of the four-propagator terms only some are left,
- with numerator pDq^4. That one is zero, because there are two
- Higgs propagators, and a non-zero result for large m obtains
- only for the most divergent part, i.e. when qqqq = D(,,,)
- Then the result is proportional to M^4, where behaviour as
- s^2 (or u^2, s*t etc.) is to be computed.
-
- These terms are put to zero, and Error wil be attached if there is
- any other four propagator term.
-
- It is assumed that there are no more than two non-Higgs propagators.
- If there are Error will be attached.
-
- P ninput
-
- C This order is of importance when ordering NOM.
-
- A M,M2,m,m2,x,qq2,qqM,q2M
- V q,q1,q3,q2,q4,q0
-
- Read WWb.e
- VERT{}
- *fix
-
- BLOCK REDUC{}
- Id,Count,x,NOM,1
- IF x^4
- Id,Adiso,qDk^n~*NOM(q,M~)*NOM(q3,m~)=0.5*qDk^(n-1)*
- {NOM(q3,m) - NOM(q,M) + (kDk-M^2+m^2)*NOM(q,M)*NOM(q3,m)}
- Id,Adiso,qDp^n~*NOM(q1,M~)*NOM(q,m~)=0.5*qDp^(n-1)*
- {NOM(q,m) - NOM(q1,M) + NOM(q,m)*NOM(q1,M)*(-pDp+m^2-M^2)}
- Id,Adiso,qDpp^n~*NOM(q2,M~)*NOM(q1,m~)=0.5*qDpp^(n-1)*
- {NOM(q1,m) - NOM(q2,M) + NOM(q1,m)*NOM(q2,M)*(- 2*pDpp -ppDpp+m^2-M^2)}
- Id,Adiso,qDkp^n~*NOM(q2,M~)*NOM(q3,m~)=0.5*qDkp^(n-1)*
- {NOM(q2,M) - NOM(q3,m) + NOM(q2,M)*NOM(q3,m)*(
- - kpDkp - 2*pDkp - 2*ppDkp + M^2 - m^2)}
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Al,kpDkp=-M^2
- Id,NOM(q~,M~)=NOM(M,q)
- Id,Commu,NOM
- Id,NOM(M~,q~)=NOM(q,M)
- ENDIF
- Id,x=1
- ENDBLOCK
-
- BLOCK Q2RED{X}
- Id,NOM(q~,M~)=NOM(M,q)
- Id,Commu,NOM
- Id,NOM(M~,q~)=NOM(q,M)
- Id,qDq=qq2
-
- C Do only for X.
-
- Id,qq2^n~*NOM(q~,'X')=qq2^n/qqM*Fxx(q,'X')
-
- C This works for M and m.
-
- Id,Ratio,qq2,qqM,q2M
- Id,q2M^n~*Fxx(q,m~)=m^(2*n)*Fxx(q,m)
- Al,q2M^n~*Fxx(q1,m~)={2*qDp-M^2+m^2}^n*Fxx(q1,m)
- Al,q2M^n~*Fxx(q2,m~)={2*qDp+2*qDpp+2*pDpp-2*M^2+m^2}^n*Fxx(q2,m)
- Al,q2M^n~*Fxx(q3,m~)={-2*qDk-M^2+m^2}^n*Fxx(q3,m)
- Al,q2M^n~*Fxx(q4,m~)={-2*qDk-2*qDpp+2*kDpp-2*M^2+m^2}^n*Fxx(q4,m)
- Id,qqM^-1*Fxx(q~,m~)=NOM(q,m)
- Al,Fxx(q~,m~)=1
- Al,qq2=qDq
- ENDBLOCK
-
- P stats
- P input
-
- Common BoxFF
-
- V q1,q2,q3,q4
- I m1=N,m0=N,m3=N,m4=N,m5=N,m6=N,m7=N,m8=N
- I a=3,b=3,c=3,d=3
-
- F F4q,F3,F2,F1
-
- C Momenta: all taken to be ingoing.
- k,p in, pp,kp out. k + p = - pp - kp.
-
- Z BoxFF(a,al,k,b,be,p,c,ga,pp,d,de,kp) =
- VIER("F,a,al,k,"F,b,be,p,"F,c,ga,pp,"F,d,de,kp)
-
- C For information: this is to be added to get the full result:
- + VIER("F,a,al,k,"F,c,ga,pp,"F,b,be,p,"F,d,de,kp)
- + VIER("F,a,al,k,"F,b,be,p,"F,d,de,kp,"F,c,ga,pp)
-
- FOUR{}
-
- Id,q1(al~)=q(al)+p(al)
- Al,q1Dq1=qDq+pDp+2*qDp
- Al,Dotpr,q1(al~)=q(al)+p(al)
- Al,q0(al~)=0
- Al,Dotpr,q0(al~)=0
- Id,q2(al~)=q(al)+p(al)+pp(al)
- Al,q2Dq2=qDq+pDp+ppDpp+2*qDp+2*qDpp+2*pDpp
- Al,Dotpr,q2(al~)=q(al)+p(al)+pp(al)
- Id,q3(al~)=q(al)-k(al)
- Al,q3Dq3=qDq-2*qDk+kDk
- Al,Dotpr,q3(al~)=q(al)-k(al)
- Id,q4(al~)=q(al)-k(al)-pp(al)
- Al,q4Dq4=qDq+kDk+ppDpp-2*qDk-2*qDpp+2*kDpp
- Al,Dotpr,q4(al~)=q(al)-k(al)-pp(al)
- Id,qu(al~)=k(al)+pp(al)
- Al,quDqu=kDk+ppDpp+2*kDpp
- Al,Dotpr,qu(al~)=k(al)+pp(al)
-
- Al,Even,NOM,1
-
- C By definition:
- Extm = 1/{1 + (2*kDpp + kDk + ppDpp)/m^2}
- = 1/{1 + 2*(kDpp - M^2)/m^2}
- ExtM = - 2*kDpp/(u-M^2)
- This makes their principal behaviour explicit.
-
- Id,NOM(qu,m)= Extm/m^2
- Al,NOM(qu,M)= ExtM/kDpp/2
- Al,NOM(q0,M~)= 1/M^2
-
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Al,kpDkp=-M^2
- Id,Count,4,M,-1,M2,-2
- Id,kp(al~)= - p(al)- k(al) - pp(al)
- Al,Dotpr,kp(al~)= - p(al) - k(al)- pp(al)
- Id,Epfred
- Al,Even,NOM,1
-
- Id,Count,4,M,-1,M2,-2
- Id,pDpp=-pDk-kDpp
-
- IF NOT NOM(q~,m)
- Id,Count,0,m,1
- ENDIF
-
- *yep
-
- Q2RED{M}
- Q2RED{M}
- *yep
- Q2RED{m}
- Q2RED{m}
- *yep
- REDUC{}
- *yep
- REDUC{}
- *yep
- REDUC{}
-
- Id,Count,4,M,-1,M2,-2
-
- *yep
-
- Id,NOM(q~,M~)=NOM(M,q)
- Id,Commu,NOM
- Id,NOM(M~,q~)=NOM(q,M)
-
- Id,Adiso,pDq^4*NOM(q~,m)*NOM(q1~,m)*NOM(q2~,M)*NOM(q3~,M)=0
-
- *yep
-
- Id,Count,x,NOM,1
-
- IF NOT x
- Id,Addfa,0
- ENDIF
-
- Id,x=1
-
- Id,NOM(q~,M)=x*NOM(q,M)
- IF Multi,x^3
- Id,Addfa,Error
- ENDIF
-
- Id,x=1
-
- *begin
- Write BoxFF1
- *end
-
- C WW-scattering 8. One loop Fi-Fi scattering, part 2. 228 sec.
- Uses output from 7, file BoxFF1. Produces BoxFF2.
-
- C Work done:
- - Expand all Higgs propagators: 1/((q+qx)^2+m^2) => 1/(q^2+m^2)
- - The assumption at this point is that that there are no more
- than 2 non-Higgs propagators. If two, take them together in
- the function Two(qa,qb). If qa not q then shift momentum so
- that only Two(q,qx) occurs. The Higgs propagators become shifted
- again. They are expanded again.
- - Expand Two(q,qx) times any non-zero number of Higgs propagators:
- Rationalize 1/(q^2+M^2)* 1/(q^2+m^2), the result contains a NOM
- but no more Two.
- Reduce any non-zero number of qDq together with Two(q,qx).
- - Work out NOM(qx,M) with qx not q, and any number of Higgs propagators.
- Shift qx to q. Expand shifted Higgs propagators.
- - Rationalize again.
- - Reduce all qDq occurences.
- - After this work there are the following types of terms:
- One Two function and no Higgs propagator;
- One NOM(q,M);
- Any number of Higgs propagators.
-
- P ninput
-
- Enter BoxFF1
-
- Read WWb.e
- ASSIGN{}
-
- *fix
-
- Names BoxFF
- P stats
-
- Z BoxFF(a,al,k,b,be,p,c,ga,pp,d,de,kp) =
- BoxFF(a,al,k,b,be,p,c,ga,pp,d,de,kp)
-
- C Expand Higgs propagators.
- There may be two of them.
-
- Id,NOM(q,m)=Nohm
-
- IF NOM(q~,m)=Fxx(q)
- Id,Count,Div,q,1,NOM,-2,Two,-4
- Id,Fxx(q~)=Fact^-2*NOM(q,m)
- Id,Fact^n~=Fxx(n,0,0)
- Id,Nohm^n~*Fxx(n1~,0,0)=Nohm^n*Fxx(n1-2*n,0,0)
- Id,m^n~*Fxx(n1~,0,0)=m^n*Fxx(n1,n,0)
- Id,Div^n~*Fxx(n1~,n2~,0)=Fxx(n1,n2,n)
- Id,Adiso,Fxx(n1~,n2~,n3~)*NOM(q1,m)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(-2*qDp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q2,m)=Fdiv(n1,n2,n3)*
- Exp(n1,n2,n3,(-2*qDp-2*qDpp-2*pDpp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q3,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q4,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk+2*qDpp-2*kDpp),1)
- ENDIF
-
- Id,Fact^n~=1
-
- B Nohm,Nom
- *yep
-
- IF NOM(q~,m)=Fxx(q)
- Id,Count,Div,q,1,NOM,-2,Two,-4
- Id,Fxx(q~)=Fact^-2*NOM(q,m)
- Id,Fact^n~=Fxx(n,0,0)
- Id,Nohm^n~*Fxx(n1~,0,0)=Nohm^n*Fxx(n1-2*n,0,0)
- Id,m^n~*Fxx(n1~,0,0)=m^n*Fxx(n1,n,0)
- Id,Div^n~*Fxx(n1~,n2~,0)=Fxx(n1,n2,n)
- Id,Adiso,Fxx(n1~,n2~,n3~)*NOM(q1,m)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(-2*qDp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q2,m)=Fdiv(n1,n2,n3)*
- Exp(n1,n2,n3,(-2*qDp-2*qDpp-2*pDpp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q3,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q4,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk+2*qDpp-2*kDpp),1)
- ENDIF
-
- Id,Fact^n~=1
-
- B Nohm,Nom
- *yep
- Id,pDpp=M^2-pDk-kDpp
- Id,Count,4,M,-1,M2,-2
-
- HCOUNT{}
- *yep
-
- Id,Adiso,NOM(q~,M)*NOM(q1~,M) = Two(q,q1)
- Id,Commu,NOM
- Id,Two(q1~,q)=Two(q,q1~)
-
- Id,Two(q1,q2~)=Sh1*Two(q,q2,-p)
- Al,Two(q2,q5~)=Sh2*Two(q,q5,qt)
- Al,Two(q3,q5~)=Sh3*Two(q,q5,k)
- Al,Two(q4,q5~)=Sh4*Two(q,q5,qu)
-
- Id,Two(q,q3,-p)=Two(q,q5)
-
- SHIFT{}
- HCOUNT{}
-
- *yep
-
- C Reduction of 1/(q^2+M^2) * 1/(q^2+m^2)^n
-
- IF Nohm^n~*Two(q,q1~)=1/q2M*Fxx(q1)/q2m^n
- Id,2,Ratio,q2M,q2m,[m2-M2]
- Id,q2M^-1*Fxx(q1~)=Two(q,q1)
- Al,Fxx(q1~)=NOM(q1,M)
- Al,q2m^n~=1/Nohm^n
- ENDIF
-
- HCOUNT{}
-
- C Elimination of qDq and Two.
- Should not occur, as qDq and M type propagators were already treated.
-
- IF qDq^n~*Two(q,q1~)=qq2^n*Fxx(q1)/q2M
- Id,2,Ratio,qq2,q2M,M2
- Id,q2M^-1*Fxx(q1~)=Two(q,q1)
- Al,Fxx(q1~)=NOM(q1,M)
- Al,qq2=qDq^2
- ENDIF
-
- *yep
-
- C Integration variable shift of 1/((q+qx)^2 + M^2)
-
- IF NOT NOM(q,M)=Nom
- Id,NOM(q1,M)=Sh1*Nom
- Al,NOM(q2,M)=Sh2*Nom
- Al,NOM(q3,M)=Sh3*Nom
- Al,NOM(q4,M)=Sh4*Nom
- Al,NOM(q5,M)=Sh5*Nom
- ENDIF
-
- SHIFT{}
-
- HCOUNT{}
-
- *yep
-
- C Reduction of 1/(q^2+M^2) * 1/(q^2+m^2)^n
-
- IF Nohm^n~*Nom=1/q2M/q2m^n
- Id,2,Ratio,q2M,q2m,[m2-M2]
- Id,q2M^-1=Nom
- Al,q2m^n~=1/Nohm^n
- ENDIF
-
- *yep
-
- C Elimination of qDq.
-
- IF Nom
- Id,Nom^n~=1/q2M^n
- Al,qDq^n~=qq2^n
- Id,Ratio,qq2,q2M,M2
- Id,q2M^n~=1/Nom^n
- Al,qq2=qDq
- Al,M2=M^2
- ENDIF
-
- IF Nohm
- Id,Nohm^n~=1/q2m^n
- Al,qDq^n~=qq2^n
- Id,Ratio,qq2,q2m,m2
- Id,q2m^n~=1/Nohm^n
- Al,qq2=qDq
- Al,m2=m^2
- ENDIF
-
- IF NOM(q~,M~)
- OR Two(q~,q1~)*Nohm^n~
- Id,Addfa,Error
- ENDIF
-
- Id,Count,4,M,-1,M2,-2
-
- Id,Count,x,Nohm,1,Nom,1,Two,1,NOM,1
-
- IF NOT x
- Id,Addfa,0
- ENDIF
-
- Id,x=1
-
- C Check dimension 0.
- C
- Id,Count,x,M,1,M2,2,m,1,m2,2,Two,-4,Nom,-2,Nohm,-2,[m2-M2],2,
- q,1,p,1,k,1,pp,1,kp,1
-
- IF NOT x^-4=1
- Id,Addfa,Error
- ENDIF
-
- B Error,Nohm,Nom
-
- *begin
- Write BoxFF2
- *end
-
- C WW-scattering 9. One loop Fi-Fi scattering, part 3. 125 sec.
- Uses output from 8. Produces BoxFF_comm.
-
- C Part 3 of BoxFF.
-
- C One loop diagrams.
- Four point function. FF scattering.
- Evaluated in the limit m^2 >> s,t,u >> M^2, where m = Higgs boson
- mass and M = W boson mass.
-
- C Work to be done:
- - Do integrals.
- 1/(qx^2+M^2) with or without Higgs propagators;
- Higgs propagators;
- Functions Two and no Higgs propagator.
-
- P ninput
-
- Enter BoxFF2
-
- Read WWb.e
- ASSIGN{}
-
- *fix
-
- Names BoxFF
- P stats
-
- Z Box(a,b,c,d,s,t,u) =
- BoxFF(a,al,k,b,be,p,c,ga,pp,d,de,kp)
-
- IF NOT Two(q~,q1~)
- Id,All,q,N,Fq
- ENDIF
-
- Id,Fq(al~)=0
- Al,Fq(al~,be~,ga~)=0
- Al,Fq(al~,be~,ga~,de~,la~)=0
- Al,Fq(al~,be~,ga~,de~,la~,a~,b~)=0
-
- Id,Fq(al~,al~)=0
-
- Id,Fq(al~,be~,be~,be~)=0
- Al,Fq(be~,be~,be~,al~)=0
-
- Al,Fq(be~,be~,be~,be~,al~,ga~)=0
- Al,Fq(al~,be~,be~,be~,be~,al~)=0
- Al,Fq(al~,ga~,be~,be~,be~,be~)=0
-
- B Nohm,Nom
- *yep
- IF NOT Two(q~,q1~)
- Id,Fq(al~,be~,ga~,de~)*Nom^l~ = dede(al,be,ga,de)*H(l,M2)
- Al,Fq(al~,be~)*Nom^l~ = D(al,be)*G(l,M2)
- Al,Nom^n~ = F(n,M2)
- Id,Fq(al~,be~,ga~,de~)*Nohm^l~ = dede(al,be,ga,de)*H(l,m2)
- Al,Fq(al~,be~)*Nohm^l~ = D(al,be)*G(l,m2)
- Al,Nohm^l~ = F(l,m2)
- ENDIF
-
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Al,kpDkp=-M^2
-
- Id,Multi,M^-2=M2^-1
- Al,Multi,m^2=m2
- Al,Multi,m^-2=m2^-1
-
- *yep
-
- STINT{}
-
- Id,N=N_+4
- Id,N_=0
- Al,N=4
- Id,pDpp=-kDp-kDpp+M2
- B i,Pi,N_,Nohm,M2
- Id,Count,4,M,-1,M2,-2
- *yep
-
- Id,Two(q,q1~)=Two(q1)
- IF Two(q~)
- Al,All,q,N,Fq
- ENDIF
- Id,Adiso,Two(q4)*Fq(al~,be~) =
- D(al,be)*B22(u,M,M) + (k(al)+pp(al))*(k(be)+pp(be))*B21(u,M,M)
- Al,Adiso,Two(q4)*Fq(al~)=- (k(al)+pp(al))*B1(u,M,M)
- Al,Two(q4)=B0(u,M,M)
-
- Id,Adiso,Two(q5)*Fq(al~,be~) =
- D(al,be)*B22(s,M,M) + (k(al)+p(al))*(k(be)+p(be))*B21(s,M,M)
- Al,Adiso,Two(q5)*Fq(al~)=- (k(al)+p(al))*B1(s,M,M)
- Al,Two(q5)=B0(s,M,M)
-
- Id,Adiso,Two(q2)*Fq(al~,be~) =
- D(al,be)*B22(t,M,M) + (pp(al)+p(al))*(pp(be)+p(be))*B21(t,M,M)
- Al,Adiso,Two(q2)*Fq(al~)= (pp(al)+p(al))*B1(t,M,M)
- Al,Two(q2)=B0(t,M,M)
-
- *yep
-
- Id,B22(u~,M~,m~)=(-0.5*F1(m)+M**2*B0(u,M,m)
- -0.5*(-u+m^2-M**2)*B1(u,M,m))/[1-N]
- Id,B21(u~,M~,m~)=((0.5*N-1)*F1(m)
- -0.5*N*(-u+m^2-M**2)*B1(u,M,m)
- +M**2*B0(u,M,m) )/u/[1-N]
- Id,B1(u~,M~,m~)=- (0.5*F1(M)-0.5*F1(m)
- -0.5*(-u+m^2-M**2)*B0(u,M,m) )/u
- Id,B0(u~,M~,M~)= - 2*i*Pi^2/N_ - i*Pi^2*Log(u) + 2*i*Pi^2
- Al,F1(M) = 2*i*Pi^2*M2/N_ + i*Pi^2*M2*(-1+Log(M2))
- Al,F1(m) = 2*i*Pi^2*m2/N_ + i*Pi^2*m2*(-1+Log(m2))
- Al,M^n~=M2^(n/2)
- Al,m^n~=m2^(n/2)
-
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_=0
- Id,N=4
- Al,ExtM = - 2*kDpp/u*{1 + M2/u + M2^2/u^2}
-
- Id,Count,0,m2,2,[m2-M2],2
- Al,Multi,m2^-1=0
- Id,Count,x,m2,1
- IF x
- Id,x^n1~*[m2-M2]^n~=x^n1*m2^n*DS(K,0,n1+n,(DB(-n+K-1,K)*M2^K*m2^-K))
- Id,x^n1~*Extm^n~=DS(K,0,n1,(DB(n+K-1,K)*(-2*kDpp/m2)^K))
- ELSE
- Id,[m2-M2]^n~=m2^n
- Al,Extm=1
- ENDIF
- Id,Count,0,m2,1
- Al,x=1
-
- Id,pDk= - 0.5*s
- Al,pDpp = - 0.5*t
- Al,kDpp = - 0.5*u
- Id,pDp=-M2
- Al,kDk=-M2
- Al,ppDpp=-M2
- Al,kpDkp=-M2
- Id,Count,4,s,2,u,2,t,2
- Id,t=-s-u
- Keep Box
- *next
-
- P input
-
- Common FTot
- Delete BoxFF
-
- C Add further diagrams, obtained by crossing. Set labels A0-A3 to 1.
-
- Z FTot=Box(a,b,c,d,s,t,u) + Box(a,c,b,d,u,t,s) + Box(a,b,d,c,s,u,t)
-
- B i,Pi,N_,M2
- Id,A0=1
- Al,A1=1
- Al,A2=1
- Al,A3=1
- Al,R1=1
- Al,R2=1
- Al,R3=1
- Al,R3a=1
- Al,R3b=1
- Al,R4=1
- Al,R4a=1
- Al,R4b=1
- Al,R5=1
- Al,R6=1
- Al,T1=1
- Al,T2=1
- Al,T3=1
-
- IF D(a,c)
- Id,t=-s-u
- ENDIF
-
- IF D(a,b)
- Id,u=-s-t
- ENDIF
-
- IF D(a,d)
- Id,s=-t-u
- ENDIF
- P output
- *yep
-
- Id,R1Z=1
- Al,R5Z=1
-
- *begin
- Write BoxFF_comm
- *end
-
- C WW-scattering 10. Fi-Fi Renormalization. Result Fi-Fi amplitude.
- Uses output from 9.
-
- C Subtraction terms four-Fi amplitude.
-
- P ninput
-
- A M,m,x,qq2,qqM,q2M,s,t,u
- V q,q0,q1,q3,q2,q4
-
- Enter BoxFF_comm
-
- Read WWb.e
- VERT{}
- *fix
-
- Names FTot
-
- I m1=N,m0=N,m3=N,m4=N,m5=N,m6=N,m7=N,m8=N
- I a=3,b=3,c=3,d=3
-
- C Momenta: all taken to be ingoing.
- k,p in, pp,kp out. k + p = - pp - kp.
-
- Z RenFF4 = FFFF(a,k,k,b,p,p,c,pp,pp,d,kp,kp)*FFFFK
-
- Z RenFFr(a,b,c,d,s,t,u)=
- DS("F;"F;-J1;TAP,(
- VIE1("F,a,k,k,"F,b,p,p,"F,c,pp,pp,"F,d,kp,kp,J1) ))
-
- + DS("F;"F;-J2;TAP,(DS("F;"F;J3;TAP,(
- VIE2("F,a,k,k,"F,b,p,p,"F,c,pp,pp,"F,d,kp,kp,J2,J3) )) ))
-
- + DS("F;"F;J4;"Z;TAP,(
- VIE3("F,a,k,k,"F,b,p,p,"F,c,pp,pp,"F,d,kp,kp,J4) ))
-
-
- Id,VIE1(K1~,a~,al~,k~,K2~,b~,be~,p~,K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~) =
- VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE3(K2,K4,J1,*,b,be,p,*,d,de,-kp,*,l2,m0,qu)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- CONT(K1,K3,J1,/,"K)*CONT(K2,K4,-J1,/,"K)
- *R3
-
- Al,VIE2(K1~,a~,al~,k~,K2~,b~,be~,p~,K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~,J2~) =
- VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE3(K2,K4,J2,*,b,be,p,*,d,de,-kp,*,l4,m4,qu)*
- VE3(J1,-J2,"N,*,l2,m0,qu,*,l3,m3,-qu,*,l5,m5,q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP(J2,-J2,*,l3,m3,qu,*,l4,m4,-qu)
- *R5
-
- + VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE3(K2,K4,J2,*,b,be,p,*,d,de,-kp,*,l4,m4,qu)*
- VE3(J1,-J2,"Z,*,l2,m0,qu,*,l3,m3,-qu,*,l5,m5,q0)*
- NNZ(a,al,k,b,be,p,l6,m6,-q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP(J2,-J2,*,l3,m3,qu,*,l4,m4,-qu)*
- PROP("Z,"Z,*,l5,m5,q0,*,l6,m6,-q0)
- *T3
-
- Id,VIE3(K1~,a~,al~,k~,K2~,b~,be~,p~,K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~) =
- VE4(K1,K3,-J1,"Z,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu,*,l3,m3,-q0)*
- VE3(K2,K4,J1,*,b,be,p,*,d,de,-kp,*,l2,m0,qu)*
- NNZ(a,al,k,b,be,p,l4,m4,q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP("Z,"Z,*,l3,m3,q0,*,l4,m4,-q0)
- *T1
-
- +VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE4(K2,K4,J1,"Z,*,b,be,p,*,d,de,-kp,*,l2,m0,qu,*,l3,m3,-q0)*
- NNZ(a,al,k,b,be,p,l4,m4,q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP("Z,"Z,*,l3,m3,q0,*,l4,m4,-q0)
- *T2
-
- Id,Anti,TAP
-
- Id,Compo,<X>,VE4,VE3,PROP
- Id,Compo,<X>,CONT
-
- Id,Adiso,CONT(FF~)*CONT(WW~)= FF + WW
- Al,CONT(FF~)= FF
-
- Id,VE4(FF~,l1~,al~,k~,l2~,be~,p~,l3~,ga~,pp~,l4~,la~,kp~)=
- FF(l1,al,k,l2,be,p,l3,ga,pp,l4,la,kp)
- Al,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
- B i,Pi,N_,M
-
- Id,qu(al~)=k(al)+pp(al)
- Al,quDqu=2*kDpp
- Al,Dotpr,qu(al~)=k(al)+pp(al)
- Al,Even,NOM,1
-
- C By definition:
- Extm = 1/{1 + (2*kDpp + kDk + ppDpp)/m^2}
- = 1/{1 + 2*(kDpp - M^2)/m^2}
- This makes the principal behaviour explicit.
-
- Id,NOM(qu,m)= Extm/m^2
- Al,NOM(q0,M~)= 1/M^2
-
- Id,NOM(qu,M)=-1/u
- Al,Even,NOM,1
- Id,kpDkp=0
- Al,kp(al~)=-k(al)-p(al)-pp(al)
- Al,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
- Id,kDk=0
- Al,pDp=0
- Al,ppDpp=0
- Id,pDk=-0.5*s
- Al,pDpp=-0.5*t
- Al,kDpp=-0.5*u
-
- ETE1{}
-
- *yep
-
- Id,Count,0,m,1,m2,2,[m2-M2],2
- Id,Count,x,m,1,m2,2,[m2-M2],2
- IF x
- Id,x^n1~*[m2-M2]^n~=x^n1*m2^n*DS(K,0,n1/2+n+1,(DB(-n+K-1,K)*M2^K*m2^-K))
- Id,x^n1~*Extm^n~=DS(K,0,n1/2+1,(DB(n+K-1,K)*(-2*kDpp/m^2)^K))
- ELSE
- Id,[m2-M2]^n~=m2^n
- Al,Extm=1
- ENDIF
- Id,M2^n~=M^(2*n)
- Al,m2^n~=m^(2*n)
- Al,kDpp=-0.5*u
- Id,Count,0,m,1,m2,2
- Al,x=1
-
- Id,Count,4,s,2,t,2,u,2
- *yep
-
- Id,Epfred
-
- IF D(a,c)
- Id,t=-s-u
- ENDIF
- IF D(a,b)
- Id,u=-s-t
- ENDIF
- IF D(a,d)
- Id,u=-s-t
- ENDIF
-
- Keep RenFF4,RenFFr
- *next
- B i,Pi,N_,M
-
- Z RenFFt=RenFF4
- + RenFFr(a,b,c,d,s,t,u) + RenFFr(a,c,b,d,u,t,s) + RenFFr(a,b,d,c,s,u,t)
-
- Id,R5W=1
- Al,R3=1
-
- IF D(a,c)
- Id,t=-s-u
- ENDIF
- IF D(a,b)
- Id,u=-s-t
- ENDIF
- IF D(a,d)
- Id,s=-t-u
- ENDIF
-
- *yep
- Id,T1=1
- Al,T2=1
- Al,T3=1
- Al,R5Z=1
- Al,R5=1
- Keep RenFFt
- *next
- P input
- C Renormalized FFFF amplitude.
-
- Z RenF = FTot - RenFFt
- B i,Pi,N_,M2,M
- Id,Multi,M2^n~=M^(2*n)
- Al,Logm2=Log(m2)
- Id,Log(s)=Log(s,m2)+Log(m2)
- Al,Log(t)=Log(t,m2)+Log(m2)
- Al,Log(u)=Log(u,m2)+Log(m2)
- P output
- *yep
- C Specialize, for computimg purposes, to index a=b, c=d, a not c.
-
- IF NOT D(a,b)=1
- Id,Addfa,0
- ENDIF
- Id,D(c,d)=1
-
- *end
-
- C WW-scattering 11. One loop W-W scattering, part 1. 681 sec.
- Produces BoxWW1, containing BoxWW.
-
- C One loop diagrams.
- Four point function. WW scattering.
- Evaluated in the limit m^2 >> s,t,u >> M^2, where m = Higgs boson
- mass and M = W boson mass.
-
- C Terms in the output are labelled by A0, A1, A2, A3, and R, T for the
- reducible and tadpole types.
- The connection is:
- Rx: reducible diagrams (in u-channel, as A3).
- R1 type: One propagator.
- R5 type: Two propagators: selfenergy insertion.
- Diagrams marked with R1Z and R5Z are Z-exchange diagrams.
- Tx: tadpole types.
- A0: Box diagram, a,al,k and c,ga,pp in opposite corners.
- A1: Inverted Triangle diagram, a,al,k and c,ga,pp on 4-vertex.
- A2: Triangle diagram, a,al,k and c,ga, pp on triangle basis.
- A3: Bubble diagram, a,al,k and c,ga,pp on one end.
-
- P ninput
-
- C Work done:
- - Generate the diagrams.
- - Reduce as much as possible q ocurrences in the numerator.
-
- It is assumed that there are no more than two non-Higgs propagators.
- If there are Error will be attached. Such terms add up to zero,
- demonstrated elsewhere.
-
- P ninput
-
- C This order is of importance when ordering NOM.
- C
- A M,M2,m,m2,x,qq2,qqM,q2M
- V q,q1,q3,q2,q4,q0
-
- Read WWb.e
- VERT{}
- *fix
-
- BLOCK REDUC{}
- Id,Count,x,NOM,1
- IF Multi,x^3
- Id,Adiso,qDk^n~*NOM(q,M~)*NOM(q3,m~)=0.5*qDk^(n-1)*
- {NOM(q3,m) - NOM(q,M) + (kDk-M^2+m^2)*NOM(q,M)*NOM(q3,m)}
- Id,Adiso,qDp^n~*NOM(q1,M~)*NOM(q,m~)=0.5*qDp^(n-1)*
- {NOM(q,m) - NOM(q1,M) + NOM(q,m)*NOM(q1,M)*(-pDp+m^2-M^2)}
- Id,Adiso,qDpp^n~*NOM(q2,M~)*NOM(q1,m~)=0.5*qDpp^(n-1)*
- {NOM(q1,m) - NOM(q2,M) + NOM(q1,m)*NOM(q2,M)*(- 2*pDpp -ppDpp+m^2-M^2)}
- Id,Adiso,qDpp^n~*NOM(q4,M~)*NOM(q3,m~)=-0.5*qDpp^(n-1)*
- {NOM(q3,m) - NOM(q4,M) + NOM(q3,m)*NOM(q4,M)*(- 2*kDpp -ppDpp+m^2-M^2)}
- Id,Adiso,qDkp^n~*NOM(q2,M~)*NOM(q3,m~)=0.5*qDkp^(n-1)*
- {NOM(q2,M) - NOM(q3,m) + NOM(q2,M)*NOM(q3,m)*(
- - kpDkp - 2*pDkp - 2*ppDkp + M^2 - m^2)}
- Id,Adiso,qDkp^n~*NOM(q4,M~)*NOM(q1,m~)=0.5*qDkp^(n-1)*
- {NOM(q1,m) - NOM(q4,M) + NOM(q1,m)*NOM(q4,M)*(- 2*pDkp -kpDkp+m^2-M^2)}
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
- Id,pDpp=-pDk-kDpp
- Id,NOM(q~,M~)=NOM(M,q)
- Id,Commu,NOM
- Id,NOM(M~,q~)=NOM(q,M)
- ENDIF
- Id,x=1
- ENDBLOCK
-
- BLOCK Q2RED{X}
- Id,NOM(q~,M~)=NOM(M,q)
- Id,Commu,NOM
- Id,NOM(M~,q~)=NOM(q,M)
- Id,qDq=qq2
-
- C Do only for X.
-
- Id,qq2^n~*NOM(q~,'X')=qq2^n/qqM*Fxx(q,'X')
-
- C This works for M and m.
-
- Id,Ratio,qq2,qqM,q2M
- Id,q2M^n~*Fxx(q,m~)=m^(2*n)*Fxx(q,m)
- Al,q2M^n~*Fxx(q1,m~)={2*qDp-M^2+m^2}^n*Fxx(q1,m)
- Al,q2M^n~*Fxx(q2,m~)={2*qDp+2*qDpp+2*pDpp-2*M^2+m^2}^n*Fxx(q2,m)
- Al,q2M^n~*Fxx(q3,m~)={-2*qDk-M^2+m^2}^n*Fxx(q3,m)
- Al,q2M^n~*Fxx(q4,m~)={-2*qDk-2*qDpp+2*kDpp-2*M^2+m^2}^n*Fxx(q4,m)
- Id,qqM^-1*Fxx(q~,m~)=NOM(q,m)
- Al,Fxx(q~,m~)=1
- Al,qq2=qDq
- ENDBLOCK
-
- P stats
-
- Common BoxWW
-
- V q1,q2,q3,q4
- I m1=N,m0=N,m3=N,m4=N,m5=N,m6=N,m7=N,m8=N
- I a=3,b=3,c=3,d=3
-
- F F4q,F3,F2,F1
-
- C Momenta: all taken to be ingoing.
- k,p in, pp,kp out. k + p = - pp - kp.
-
- Z BoxWW(a,al,k,b,be,p,c,ga,pp,d,de,kp) =
- VIER("W,a,k,k,"W,b,p,p,"W,c,pp,pp,"W,d,kp,kp)/M^4
-
- C For information: this is to be added to get the full result:
-
- + VIER("W,a,al,k,"W,c,ga,pp,"W,b,be,p,"W,d,de,kp)
- + VIER("W,a,al,k,"W,b,be,p,"W,d,de,kp,"W,c,ga,pp)
-
- FOUR{}
-
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
-
- *yep
-
- Id,q1(al~)=q(al)+p(al)
- Al,q1Dq1=qDq+2*qDp
- Al,Dotpr,q1(al~)=q(al)+p(al)
- Al,q0(al~)=0
- Al,Dotpr,q0(al~)=0
- Id,q2(al~)=q(al)+p(al)+pp(al)
- Al,q2Dq2=qDq+2*qDp+2*qDpp+2*pDpp
- Al,Dotpr,q2(al~)=q(al)+p(al)+pp(al)
- Id,q3(al~)=q(al)-k(al)
- Al,q3Dq3=qDq-2*qDk
- Al,Dotpr,q3(al~)=q(al)-k(al)
- Id,q4(al~)=q(al)-k(al)-pp(al)
- Al,q4Dq4=qDq-2*qDk-2*qDpp+2*kDpp
- Al,Dotpr,q4(al~)=q(al)-k(al)-pp(al)
- Id,qu(al~)=k(al)+pp(al)
- Al,quDqu=kDk+2*kDpp
- Al,Dotpr,qu(al~)=k(al)+pp(al)
-
- Al,Even,NOM,1
-
- Id,Epfred
- *yep
-
-
- C By definition:
- Extm = 1/{1 + (2*kDpp + kDk + ppDpp)/m^2}
- = 1/{1 + 2*(kDpp - M^2)/m^2}
- ExtM = - 2*kDpp/(u-M^2). Note ExtM=-1 in lowest order.
- This makes their principal behaviour explicit.
-
- Id,NOM(qu,m)= Extm/m^2
- Al,NOM(qu,M)= ExtM/kDpp/2
- Al,NOM(q0,M~)= 1/M^2
-
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
- *yep
- Id,Count,0,NOM,-2,p,1,k,1,pp,1,kp,1,q,1,m,1
- Id,kp(al~)= - p(al)- k(al) - pp(al)
- Al,Dotpr,kp(al~)= - p(al) - k(al)- pp(al)
- Id,Count,0,NOM,-2,p,1,k,1,pp,1,kp,1,q,1,m,1
- Id,pDpp=-pDk-kDpp
- Id,Count,0,NOM,-2,p,1,k,1,pp,1,kp,1,q,1,m,1
-
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
-
- Id,Epfred
- Al,Even,NOM,1
-
- IF NOT NOM(q~,m)
- Id,Count,0,m,1
- ENDIF
-
- *yep
-
- Q2RED{M}
- Q2RED{M}
- *yep
- Q2RED{m}
- Q2RED{m}
- *yep
- REDUC{}
- *yep
- REDUC{}
- *yep
- REDUC{}
- *yep
- REDUC{}
- *yep
- REDUC{}
- *yep
- REDUC{}
- *yep
- Id,qDk=-qDkp-qDp-qDpp
- REDUC{}
- *yep
- REDUC{}
- *yep
- Id,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
- *yep
- REDUC{}
- *yep
- REDUC{}
- Id,qDpp=-qDkp-qDp-qDk
- *yep
- REDUC{}
- *yep
- REDUC{}
- *yep
- Id,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
- *yep
- REDUC{}
- *yep
- REDUC{}
-
- Id,pDpp=-pDk-kDpp
- Id,Count,0,NOM,-2,p,1,k,1,pp,1,kp,1,q,1,m,1
-
- *yep
-
- Id,NOM(q~,M~)=NOM(M,q)
- Id,Commu,NOM
- Id,NOM(M~,q~)=NOM(q,M)
-
- Id,Adiso,pDq^4*NOM(q~,m)*NOM(q1~,m)*NOM(q2~,M)*NOM(q3~,M)=0
-
- *yep
-
- Id,Count,x,NOM,1
-
- IF NOT x
- Id,Addfa,0
- ENDIF
-
- Id,x=1
-
- Id,NOM(q~,M)=x*NOM(q,M)
- IF Multi,x^3
- Id,Addfa,Error
- ENDIF
-
- B Error
-
- Id,x=1
-
- *begin
- Write BoxWW1
- *end
-
- C WW-scattering 12. One loop W-W scattering, part 2. 605 sec.
- Uses output from 11. Produces BoxWW2, containing BoxWW.
-
- C Part 2 of BoxWW.
-
- C The input file contains terms (three-point functions, no Higgs propagators)
- labelled with 'Error'. They add up to zero; see program 15 for proof.
- Here only the inifinite part is kept, and shown to add up to zero as
- no 'Error' label remains.
-
- C Work done:
- - Expand all Higgs propagators: 1/((q+qx)^2+m^2) => 1/(q^2+m^2)
- - The assumption at this point is that that there are no more
- than 2 non-Higgs propagators. If two, take them together in
- the function Two(qa,qb). If qa not q then shift momentum so
- that only Two(q,qx) occurs. The Higgs propagators become shifted
- again. They are expanded again.
- - Expand Two(q,qx) times any non-zero number of Higgs propagators:
- Rationalize 1/(q^2+M^2)* 1/(q^2+m^2), the result contains a NOM
- but no more Two.
- Reduce any non-zero number of qDq together with Two(q,qx).
- - Work out NOM(qx,M) with qx not q, and any number of Higgs propagators.
- Shift qx to q. Expand shifted Higgs propagators.
- - Rationalize again.
- - Reduce all qDq occurences.
- - After this work there are the following types of terms:
- One Two function and no Higgs propagator;
- One NOM(q,M);
- Any number of Higgs propagators.
-
- P ninput
-
- Enter BoxWW1
-
- Read WWb.e
-
- ASSIGN{}
-
- *fix
-
- Names BoxWW
-
- P stats
-
- Z BoxWW(a,al,k,b,be,p,c,ga,pp,d,de,kp) =
- BoxWW(a,al,k,b,be,p,c,ga,pp,d,de,kp)
-
- IF Error
- C Compute infinite part of three-pount functions not containing m.
- Supposedly nothing survives. See program 15.
-
- Id,Count,-4,NOM,-2,q,1
- Id,All,q,N,Fq,"F_
- Id,Adiso,NOM(q~,M)*NOM(q1~,M)*NOM(q2~,M)*Fq(al~,be~)=
- -2*i*Pi^2/N_*D(al,be)
- ENDIF
-
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
- Id,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
-
- Id,pDpp=-pDk-kDpp
-
- *yep
-
- C Expand Higgs propagators.
- There may be two of them.
-
- Id,NOM(q,m)=Nohm
-
- IF NOM(q~,m)=Fxx(q)
- Id,Count,Div,q,1,NOM,-2,Two,-4
- Id,Fxx(q~)=Fact^-2*NOM(q,m)
- Id,Fact^n~=Fxx(n,0,0)
- Id,Nohm^n~*Fxx(n1~,0,0)=Nohm^n*Fxx(n1-2*n,0,0)
- Id,m^n~*Fxx(n1~,0,0)=m^n*Fxx(n1,n,0)
- Id,Div^n~*Fxx(n1~,n2~,0)=Fxx(n1,n2,n)
- Id,Adiso,Fxx(n1~,n2~,n3~)*NOM(q1,m)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(-2*qDp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q2,m)=Fdiv(n1,n2,n3)*
- Exp(n1,n2,n3,(-2*qDp-2*qDpp-2*pDpp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q3,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q4,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk+2*qDpp-2*kDpp),1)
- ENDIF
-
- Id,Fact^n~=1
-
- B Nohm,Nom
- *yep
-
- IF NOM(q~,m)=Fxx(q)
- Id,Count,Div,q,1,NOM,-2,Two,-4
- Id,Fxx(q~)=Fact^-2*NOM(q,m)
- Id,Fact^n~=Fxx(n,0,0)
- Id,Nohm^n~*Fxx(n1~,0,0)=Nohm^n*Fxx(n1-2*n,0,0)
- Id,m^n~*Fxx(n1~,0,0)=m^n*Fxx(n1,n,0)
- Id,Div^n~*Fxx(n1~,n2~,0)=Fxx(n1,n2,n)
- Id,Adiso,Fxx(n1~,n2~,n3~)*NOM(q1,m)=Fdiv(n1,n2,n3)*Exp(n1,n2,n3,(-2*qDp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q2,m)=Fdiv(n1,n2,n3)*
- Exp(n1,n2,n3,(-2*qDp-2*qDpp-2*pDpp),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q3,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk),1)
- Al,Adiso,Fxx(n1~,n2~,n3~)*NOM(q4,m)=Fdiv(n1,n2,n3)
- *Exp(n1,n2,n3,(2*qDk+2*qDpp-2*kDpp),1)
- ENDIF
-
- Id,Fact^n~=1
-
- B Nohm,Nom
- *yep
- Id,pDpp=M^2-pDk-kDpp
- Id,Count,0,NOM,-2,Two,-4,Nom,-2,Nohm,-2,[m2-M2],2,p,1,k,1,pp,1,kp,1,q,1,m,1
-
- HCOUNT{}
- *yep
-
- Id,Adiso,NOM(q~,M)*NOM(q1~,M) = Two(q,q1)
- Id,Commu,NOM
- Id,Two(q1~,q)=Two(q,q1~)
-
- Id,Two(q1,q2~)=Sh1*Two(q,q2,-p)
- Al,Two(q2,q5~)=Sh2*Two(q,q5,qt)
- Al,Two(q3,q5~)=Sh3*Two(q,q5,k)
- Al,Two(q4,q5~)=Sh4*Two(q,q5,qu)
-
- SHIFT{}
- HCOUNT{}
-
- *yep
-
- Id,Two(q,q3,-p)=Two(q,q5)
- Al,Two(q,q4,k)=Two(q,q6)*Chsi
- Al,Two(q,q4,-p)=Two(q,q7)
- Al,Two(q,q2,k)=Two(q,q7)*Chsi
- Al,Two(q,q2,-p)=Two(q,q6)
-
- Id,Multi,Chsi^2=1
- IF Chsi=1
- Al,qDq=qDq
- Al,Dotpr,q(al~)=-q(al)
- ENDIF
-
- *yep
-
- C Reduction of 1/(q^2+M^2) * 1/(q^2+m^2)^n
-
- IF Nohm^n~*Two(q,q1~)=1/q2M*Fxx(q1)/q2m^n
- Id,2,Ratio,q2M,q2m,[m2-M2]
- Id,q2M^-1*Fxx(q1~)=Two(q,q1)
- Al,Fxx(q1~)=NOM(q1,M)
- Al,q2m^n~=1/Nohm^n
- ENDIF
-
- HCOUNT{}
-
- C Elimination of qDq and Two.
- Should not occur, as qDq and M type propagators were already treated.
-
- IF qDq^n~*Two(q,q1~)=qq2^n*Fxx(q1)/q2M
- Id,2,Ratio,qq2,q2M,M2
- Id,q2M^-1*Fxx(q1~)=Two(q,q1)
- Al,Fxx(q1~)=NOM(q1,M)
- Al,qq2=qDq^2
- ENDIF
-
- *yep
-
- C Integration variable shift of 1/((q+qx)^2 + M^2)
-
- IF NOT NOM(q,M)=Nom
- Id,NOM(q1,M)=Sh1*Nom
- Al,NOM(q2,M)=Sh2*Nom
- Al,NOM(q3,M)=Sh3*Nom
- Al,NOM(q4,M)=Sh4*Nom
- Al,NOM(q5,M)=Sh5*Nom
- Al,NOM(q6,M)=Sh6*Nom
- Al,NOM(q7,M)=Sh7*Nom
- ENDIF
-
- SHIFT{}
-
- HCOUNT{}
-
- *yep
-
- C Reduction of 1/(q^2+M^2) * 1/(q^2+m^2)^n
-
- IF Nohm^n~*Nom=1/q2M/q2m^n
- Id,2,Ratio,q2M,q2m,[m2-M2]
- Id,q2M^-1=Nom
- Al,q2m^n~=1/Nohm^n
- ENDIF
-
- *yep
-
- C Elimination of qDq.
-
- IF Nom
- Id,Nom^n~=1/q2M^n
- Al,qDq^n~=qq2^n
- Id,Ratio,qq2,q2M,M2
- Id,q2M^n~=1/Nom^n
- Al,qq2=qDq
- Al,M2=M^2
- ENDIF
-
- IF Nohm
- Id,Nohm^n~=1/q2m^n
- Al,qDq^n~=qq2^n
- Id,Ratio,qq2,q2m,m2
- Id,q2m^n~=1/Nohm^n
- Al,qq2=qDq
- Al,m2=m^2
- ENDIF
-
- IF NOM(q~,M~)
- OR Two(q~,q1~)*Nohm^n~
- Id,Addfa,Error
- ENDIF
-
- C Count all but M.
- C
- Id,Count,0,NOM,-2,Two,-4,Nom,-2,Nohm,-2,[m2-M2],2,
- p,1,k,1,pp,1,kp,1,q,1,m,1
-
- Id,Count,x,Nohm,1,Nom,1,Two,1,NOM,1
-
- IF NOT x
- Id,Addfa,0
- ENDIF
-
- Id,x=1
-
- C Check dimension 0.
- C
- Id,Count,x,M,1,M2,2,m,1,m2,2,Two,-4,Nom,-2,Nohm,-2,[m2-M2],2,
- q,1,p,1,k,1,pp,1,kp,1
-
- IF NOT x^-4=1
- Id,Addfa,Error
- ENDIF
-
- B Error,Nohm,Nom
-
- *begin
- Write BoxWW2
- *end
-
- C WW-scattering 13. One loop W-W scattering, part 3. 447 sec.
- Uses output from 12. Produces BoxWW_comm, containing Wtot.
-
- C One loop diagrams.
- Four point function. WW scattering.
- Evaluated in the limit m^2 >> s,t,u >> M^2, where m = Higgs boson
- mass and M = W boson mass.
-
- P ninput
-
- C Work to be done:
- - Do integrals.
- 1/(qx^2+M^2) with or without Higgs propagators;
- Higgs propagators;
- Functions Two and no Higgs propagator.
-
- Enter BoxWW2
-
- Read WWb.e
-
- ASSIGN{}
-
- *fix
-
- Names BoxWW
- P stats
-
- Z BoxW(a,b,c,d,s,t,u) =
- BoxWW(a,al,k,b,be,p,c,ga,pp,d,de,kp)
-
- IF NOT Two(q~,q1~)
- Id,All,q,N,Fq
- ENDIF
-
- Id,Fq(al~)=0
- Al,Fq(al~,be~,ga~)=0
- Al,Fq(al~,be~,ga~,de~,la~)=0
- Al,Fq(al~,be~,ga~,de~,la~,a~,b~)=0
-
- Id,Fq(al~,al~)=0
-
- Id,Fq(al~,be~,be~,be~)=0
- Al,Fq(be~,be~,be~,al~)=0
-
- Al,Fq(be~,be~,be~,be~,al~,ga~)=0
- Al,Fq(al~,be~,be~,be~,be~,al~)=0
- Al,Fq(al~,ga~,be~,be~,be~,be~)=0
-
- B Nohm,Nom
- *yep
- IF NOT Two(q~,q1~)
- Id,Fq(al~,be~,ga~,de~)*Nom^l~ = dede(al,be,ga,de)*H(l,M2)
- Al,Fq(al~,be~)*Nom^l~ = D(al,be)*G(l,M2)
- Al,Nom^n~ = F(n,M2)
- Id,Fq(al~,be~,ga~,de~)*Nohm^l~ = dede(al,be,ga,de)*H(l,m2)
- Al,Fq(al~,be~)*Nohm^l~ = D(al,be)*G(l,m2)
- Al,Nohm^l~ = F(l,m2)
- ENDIF
-
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Al,kpDkp=-M^2
-
- Id,Multi,M^-2=M2^-1
- Al,Multi,m^2=m2
- Al,Multi,m^-2=m2^-1
-
- *yep
-
- STINT{}
-
- Id,N=N_+4
- Id,N_=0
- Al,N=4
- Id,pDpp=-kDp-kDpp+M2
- B i,Pi,N_,Nohm,M2
- Id,Count,x,M,1,M2,2
- IF NOT x^-4=1
- Id,Addfa,0
- ENDIF
- C Id,Count,4,p,1,k,1,pp,1,kp,1,q,1,Two,10,Extm,10,ExtM,10
- *yep
- Id,Two(q,q1~)=Two(q1)
- IF Two(q~)
- Al,All,q,N,Fq
- ENDIF
- Id,Adiso,Two(q4)*Fq(al~,be~) =
- D(al,be)*B22(u,M,M) + (k(al)+pp(al))*(k(be)+pp(be))*B21(u,M,M)
- Al,Adiso,Two(q4)*Fq(al~)=- (k(al)+pp(al))*B1(u,M,M)
- Al,Two(q4)=B0(u,M,M)
-
- Id,Adiso,Two(q5)*Fq(al~,be~) =
- D(al,be)*B22(s,M,M) + (k(al)+p(al))*(k(be)+p(be))*B21(s,M,M)
- Al,Adiso,Two(q5)*Fq(al~)=- (k(al)+p(al))*B1(s,M,M)
- Al,Two(q5)=B0(s,M,M)
-
- Id,Adiso,Two(q2)*Fq(al~,be~) =
- D(al,be)*B22(t,M,M) + (pp(al)+p(al))*(pp(be)+p(be))*B21(t,M,M)
- Al,Adiso,Two(q2)*Fq(al~)= (pp(al)+p(al))*B1(t,M,M)
- Al,Two(q2)=B0(t,M,M)
-
- Al,Adiso,Two(q1)*Fq(al~,be~) =
- D(al,be)*BB22 + p(al)*p(be)*BB21
- Al,Adiso,Two(q1)*Fq(al~)= p(al)*BB1
- Al,Two(q1)=BB0
-
- Al,Adiso,Two(q3)*Fq(al~,be~) =
- D(al,be)*BB22 + k(al)*k(be)*BB21
- Al,Adiso,Two(q3)*Fq(al~)= -k(al)*BB1
- Al,Two(q3)=BB0
-
- Al,Adiso,Two(q6)*Fq(al~,be~) =
- D(al,be)*BB22 + pp(al)*pp(be)*BB21
- Al,Adiso,Two(q6)*Fq(al~)= pp(al)*BB1
- Al,Two(q6)=BB0
-
- Al,Adiso,Two(q7)*Fq(al~,be~) =
- D(al,be)*BB22 + (k(al)+pp(al)+p(al))*(k(be)+pp(be)+p(be))*BB21
- Al,Adiso,Two(q7)*Fq(al~)= -(k(al)+pp(al)+p(al))*BB1
- Al,Two(q7)=BB0
-
- *yep
-
- Id,B22(u~,M~,m~)=(-0.5*F1(m)+M**2*B0(u,M,m)
- -0.5*(-u+m^2-M**2)*B1(u,M,m))/[1-N]
- Id,B21(u~,M~,m~)=((0.5*N-1)*F1(m)
- -0.5*N*(-u+m^2-M**2)*B1(u,M,m)
- +M**2*B0(u,M,m) )/u/[1-N]
- Id,B1(u~,M~,m~)=- (0.5*F1(M)-0.5*F1(m)
- -0.5*(-u+m^2-M**2)*B0(u,M,m) )/u
- Id,B0(u~,M~,M~)= - 2*i*Pi^2/N_ - i*Pi^2*Log(u) + 2*i*Pi^2
- Al,F1(M) = 2*i*Pi^2*M2/N_ + i*Pi^2*M2*(-1+Log(M2))
- Al,F1(m) = 2*i*Pi^2*m2/N_ + i*Pi^2*m2*(-1+Log(m2))
- Al,M^n~=M2^(n/2)
- Al,m^n~=m2^(n/2)
-
- Id,BB0=i*Pi^2
- * ( - Log(M2) - 2*N_^-1 - [Pi/Sqrt(3)-2] )
- Al,BB1=i*Pi^2
- * ( 1/2*Log(M2) + N_^-1 + 1/2*[Pi/Sqrt(3)-2] )
- Al,BB21=i*Pi^2
- * ( 1/18 - 1/3*Log(M2) - 2/3*N_^-1 )
- Al,BB22=i*Pi^2*M2
- * ( - 4/9 + 5/12*Log(M2) + 5/6*N_^-1 + 1/4*[Pi/Sqrt(3)-2] )
-
- Id,N=N_+4
- Al,[1-N]^-1=-1/3 + N_/9
- Id,N_=0
- Id,N=4
- Al,ExtM = - 2*kDpp/u*{1 + M2/u + M2^2/u^2}
-
- Id,Count,0,m2,2,[m2-M2],2
- Al,Multi,m2^-1=0
- Id,Count,x,m2,1
- IF x
- Id,x^n1~*[m2-M2]^n~=x^n1*m2^n*DS(K,0,n1+n,(DB(-n+K-1,K)*M2^K*m2^-K))
- Id,x^n1~*Extm^n~=DS(K,0,n1,(DB(n+K-1,K)*(-2*kDpp/m2)^K))
- ELSE
- Id,[m2-M2]^n~=m2^n
- Al,Extm=1
- ENDIF
- Id,Count,0,m2,1
- Al,x=1
-
- Id,pDk= - 0.5*s
- C - 0.5*pDp - 0.5*kDk
- Al,pDpp = - 0.5*t
- C - 0.5*pDp - 0.5*ppDpp
- Al,kDpp = - 0.5*u
- C - 0.5*kDk - 0.5*ppDpp
- Id,pDp=-M2
- Al,kDk=-M2
- Al,ppDpp=-M2
- Al,kpDkp=-M2
- Id,Count,4,s,2,u,2,t,2
- Id,t=-s-u
- Keep BoxW
- *next
- P input
- C Add further diagrams, obtained by crossing. Set labels A0-A3 to 1.
-
- Common WTot
- Delete BoxWW
-
- Z WTot=BoxW(a,b,c,d,s,t,u) + BoxW(a,c,b,d,u,t,s) + BoxW(a,b,d,c,s,u,t)
-
- B i,Pi,N_,M2
- Id,A0=1
- Al,A1=1
- Al,A2=1
- Al,A3=1
- Al,R1=1
- Al,R2=1
- Al,R3=1
- Al,R3a=1
- Al,R3b=1
- Al,R4=1
- Al,R4a=1
- Al,R4b=1
- Al,R5=1
- Al,R6=1
- Al,T1=1
- Al,T2=1
- Al,T3=1
- IF D(a,c)
- Id,t=-s-u
- ENDIF
- IF D(a,b)
- Id,u=-s-t
- ENDIF
- IF D(a,d)
- Id,s=-t-u
- ENDIF
- P output
- *yep
-
- Id,R1Z=1
- Al,R5Z=1
-
- *begin
- Write BoxWW_comm
- *end
-
- C WW-scattering 14. W-W Renormalization. Result W-W amplitude.
- Uses output from 14.
-
- C Subtraction terms four-W amplitude.
-
- P ninput
-
- A M,m,x,qq2,qqM,q2M,s,t,u
- V q,q0,q1,q3,q2,q4
-
- Enter BoxWW_comm
-
- Read WWb.e
- VERT{}
- *fix
-
- Names WTot
-
- I m1=N,m0=N,m3=N,m4=N,m5=N,m6=N,m7=N,m8=N
- I a=3,b=3,c=3,d=3
-
- C Momenta: all taken to be ingoing.
- k,p in, pp,kp out. k + p = - pp - kp.
-
- Z RenWW4 = WWWW(a,k,k,b,p,p,c,pp,pp,d,kp,kp)/M^4*WWWWK
-
- Z RenWWr(a,b,c,d,s,t,u)=
- DS("W;"W;-J1;TAP,(
- VIE1("W,a,k,k,"W,b,p,p,"W,c,pp,pp,"W,d,kp,kp,J1)/M^4 ))
-
- + DS("W;"W;-J2;TAP,(DS("W;"W;J3;TAP,(
- VIE2("W,a,k,k,"W,b,p,p,"W,c,pp,pp,"W,d,kp,kp,J2,J3)/M^4 )) ))
-
- + DS("W;"W;J4;"Z;TAP,(
- VIE3("W,a,k,k,"W,b,p,p,"W,c,pp,pp,"W,d,kp,kp,J4)/M^4 ))
-
-
- Id,VIE1(K1~,a~,al~,k~,K2~,b~,be~,p~,K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~) =
- VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE3(K2,K4,J1,*,b,be,p,*,d,de,-kp,*,l2,m0,qu)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- CONT(K1,K3,J1,/,"K)*CONT(K2,K4,-J1,/,"K)
- *R3
-
- Al,VIE2(K1~,a~,al~,k~,K2~,b~,be~,p~,K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~,J2~) =
- VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE3(K2,K4,J2,*,b,be,p,*,d,de,-kp,*,l4,m4,qu)*
- VE3(J1,-J2,"N,*,l2,m0,qu,*,l3,m3,-qu,*,l5,m5,q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP(J2,-J2,*,l3,m3,qu,*,l4,m4,-qu)
- *R5(J1,J2)
-
- + VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE3(K2,K4,J2,*,b,be,p,*,d,de,-kp,*,l4,m4,qu)*
- VE3(J1,-J2,"Z,*,l2,m0,qu,*,l3,m3,-qu,*,l5,m5,q0)*
- NNZ(a,al,k,b,be,p,l6,m6,-q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP(J2,-J2,*,l3,m3,qu,*,l4,m4,-qu)*
- PROP("Z,"Z,*,l5,m5,q0,*,l6,m6,-q0)
- *T3
-
- Id,VIE3(K1~,a~,al~,k~,K2~,b~,be~,p~,K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~) =
- VE4(K1,K3,-J1,"Z,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu,*,l3,m3,-q0)*
- VE3(K2,K4,J1,*,b,be,p,*,d,de,-kp,*,l2,m0,qu)*
- NNZ(a,al,k,b,be,p,l4,m4,q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP("Z,"Z,*,l3,m3,q0,*,l4,m4,-q0)
- *T1
-
- +VE3(K1,K3,-J1,*,a,al,k,*,c,ga,-pp,*,l1,m1,-qu)*
- VE4(K2,K4,J1,"Z,*,b,be,p,*,d,de,-kp,*,l2,m0,qu,*,l3,m3,-q0)*
- NNZ(a,al,k,b,be,p,l4,m4,q0)*
- PROP(J1,-J1,*,l1,m1,qu,*,l2,m0,-qu)*
- PROP("Z,"Z,*,l3,m3,q0,*,l4,m4,-q0)
- *T2
-
- Id,Anti,TAP
-
- Id,Compo,<X>,VE4,VE3,PROP
- Id,Compo,<X>,CONT
-
- Id,Adiso,CONT(FF~)*CONT(WW~)= FF + WW
- Al,CONT(FF~)= FF
-
- Id,VE4(FF~,l1~,al~,k~,l2~,be~,p~,l3~,ga~,pp~,l4~,la~,kp~)=
- FF(l1,al,k,l2,be,p,l3,ga,pp,l4,la,kp)
- Al,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
- B i,Pi
-
- Id,qu(al~)=k(al)+pp(al)
- Al,quDqu=2*kDpp
- Al,Dotpr,qu(al~)=k(al)+pp(al)
- Al,Even,NOM,1
-
- C By definition:
- Extm = 1/{1 + (2*kDpp + kDk + ppDpp)/m^2}
- = 1/{1 + 2*(kDpp - M^2)/m^2}
- This makes the principal behaviour explicit.
-
- Id,NOM(qu,m)= Extm/m^2
- Al,NOM(q0,M~)= 1/M^2
-
- Id,NOM(qu,M)=-1/u
- Al,Even,NOM,1
- Id,kpDkp=0
- Al,kp(al~)=-k(al)-p(al)-pp(al)
- Al,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
- Id,kDk=0
- Al,pDp=0
- Al,ppDpp=0
- Id,pDk=-0.5*s
- Al,pDpp=-0.5*t
- Al,kDpp=-0.5*u
-
- ETE1{}
- Id,Count,0,m,1,m2,2,[m2-M2],2
- *yep
-
- Id,Count,x,m,1,m2,2,[m2-M2],2
- IF x
- Id,x^n1~*[m2-M2]^n~=x^n1*m2^n*DS(K,0,n1/2+n+1,(DB(-n+K-1,K)*M2^K*m2^-K))
- Id,x^n1~*Extm^n~=DS(K,0,n1/2+1,(DB(n+K-1,K)*(-2*kDpp/m^2)^K))
- ELSE
- Id,[m2-M2]^n~=m2^n
- Al,Extm=1
- ENDIF
- Id,M2^n~=M^(2*n)
- Al,m2^n~=m^(2*n)
- Al,kDpp=-0.5*u
- Id,t=-s-u
- Id,Count,0,m,1
- Al,x=1
-
- Id,Count,4,s,2,t,2,u,2
- Al,R5("W,"W)=R5W
- Al,R5("Z,"Z)=R5Z
- *yep
-
- Id,Epfred
-
- Id,t=-s-u
-
- Keep RenWW4,RenWWr
- *next
- B i,Pi,N_,M
-
- Z RenWWt=RenWW4
- + RenWWr(a,b,c,d,s,t,u) + RenWWr(a,c,b,d,u,t,s) + RenWWr(a,b,d,c,s,u,t)
-
- C Id,R5W=1
- Al,R3=1
-
- IF D(a,c)
- Id,t=-s-u
- ENDIF
- IF D(a,b)
- Id,u=-s-t
- ENDIF
- IF D(a,d)
- Id,s=-t-u
- ENDIF
-
- *yep
- Id,T1=1
- Al,T2=1
- Al,T3=1
- Al,R5Z=1
- Al,R5W=1
- Al,R3=1
- Keep RenWWt
- *next
- P input
- C Renormalized WWWW (all longitudinal) amplitude.
-
- Z RenW = WTot - RenWWt
-
- B i,Pi,N_,M2,M
- Id,Multi,M2^n~=M^(2*n)
- Al,Logm2=Log(m2)
- Id,Log(s)=Log(s,m2)+Log(m2)
- Al,Log(t)=Log(t,m2)+Log(m2)
- Al,Log(u)=Log(u,m2)+Log(m2)
-
- P output
- *yep
- C Specialize, for computimg purposes, to index a=b, c=d, a not c.
-
- IF NOT D(a,b)=1
- Id,Addfa,0
- ENDIF
- Id,D(c,d)=1
-
- *end
-
- C WW-scattering 15. Verification of part of WW scattering calculation.
- Uses output from 11.
-
- C Cross.e: demonstrates that the part labelled with 'Error' in file
- BoxWW1 is zero.
- This requires addition of the crossed pieces and working out of the
- three point functions.
- The block CCCP contains expressions for the C-functions as needed
- for the purposes here. Block CCC is somewhat more detailed.
-
- P ninput
-
- Enter BoxWW1
-
- BLOCK CCC{}
-
- Id,C11(t~) = + 2*i*N_^-1*Pi^2*t^-1 + i*Pi^2*LogM2*t^-1 + i*Pi^2*
- [Pi/Sqrt(3)-2]*t^-1 - CC0(t)
-
- + B0(t,M,M)
- * ( t^-1 )
-
- Al,C12(t~) = - 2*i*N_^-1*Pi^2*t^-1 - i*Pi^2*LogM2*t^-1 - i*Pi^2*
- [Pi/Sqrt(3)-2]*t^-1
-
- + B0(t,M,M) * ( - t^-1 )
-
- Al,C24(t~) = + 1/4*i*Pi^2 - 1/2*M^2*CC0(t) + 1/4*B0(t,M,M)
-
- Al,C21(t~) = - 3*i*N_^-1*Pi^2*t^-1 - 3/2*i*Pi^2*LogM2*t^-1 - 3/2*i*Pi^2*
- [Pi/Sqrt(3)-2]*t^-1 + CC0(t)
-
- + B0(t,M,M)
- * ( - 3/2*t^-1 )
-
- Al,C23(t~) =
- + 2*i*N_^-1*Pi^2*t^-1 + i*Pi^2*LogM2*t^-1 + i*Pi^2*
- [Pi/Sqrt(3)-2]*t^-1 + 1/2*i*Pi^2*t^-1 - M^2*t^-1*CC0(t)
-
- + B0(t,M,M)
- * ( t^-1 )
-
- Al,C22(t~) = + i*N_^-1*Pi^2*t^-1 + 1/2*i*Pi^2*LogM2*t^-1 + 1/2*i*Pi^2*
- [Pi/Sqrt(3)-2]*t^-1
-
- + B0(t,M,M)
- * ( 1/2*t^-1 )
-
- Id,B0(u~,M~,M~)= - 2*i*Pi^2/N_ - i*Pi^2*Log(u) + 2*i*Pi^2
-
- ENDBLOCK
-
-
- BLOCK CCCP{}
- C BB0 and BB1 are the two-point functions for equal mass with
- also pDp = - M^2.
-
- Id,C11(t~) = - t^-1*BB0 - CC0(t) + B0(t,M,M) * ( t^-1 )
-
- Al,C12(t~) = t^-1*BB0 + B0(t,M,M) * ( - t^-1 )
-
- Al,C24(t~) = 1/4*i*Pi^2 - 1/2*M^2*CC0(t) + 1/4*B0(t,M,M)
-
- Al,C21(t~) = t^-1*BB0 - t^-1*BB1 + CC0(t) + B0(t,M,M) * ( - 3/2*t^-1 )
-
- Al,C23(t~) = 1/2*i*Pi^2*t^-1 - M^2*t^-1*CC0(t) - t^-1*BB0
- + B0(t,M,M) * ( t^-1 )
-
- Al,C22(t~) = t^-1*BB1 + B0(t,M,M) * ( 1/2*t^-1 )
-
- Id,BB1 = -0.5*BB0
-
- ENDBLOCK
-
- *fix
-
- F Fq,CC0,C11,C12,C21,C22,C23,C24
-
- Names BoxWW
- P stats
-
- Z BoxW(a,k,b,p,c,pp,d,kp,s,t,u,q1,q2,q3,q4) =
- BoxWW(a,al,k,b,be,p,c,ga,pp,d,de,kp)
-
- IF NOT Error=1
- Id,Addfa,0
- ENDIF
-
- Id,ExtM=1
-
- Keep BoxW
- *next
-
- Z Box=
- BoxW(a,k,b,p,c,pp,d,kp,s,t,u,q1,q2,q3,q4)
- + BoxW(a,k,c,pp,b,p,d,kp,u,t,s,q6,q2,q3,q5)
- + BoxW(a,k,b,p,d,kp,c,pp,s,u,t,q1,q4,q3,q2)
- *yep
-
- IF Adiso,NOM(q,M)*NOM(q1,M)*NOM(q3,M)=Three(k,p,s)
- Al,Dotpr,q(al~)=q(al)+k(al)
- ENDIF
-
- Id,Adiso,NOM(q,M)*NOM(q1,M)*NOM(q2,M)=Three(p,pp,t)
-
- Id,Adiso,NOM(q,M)*NOM(q1,M)*NOM(q4,M)=Three(p,kp,u)
-
- IF Adiso,NOM(q,M)*NOM(q2,M)*NOM(q3,M)=Three(k,kp,t)
- Al,Dotpr,q(al~)=-q(al)
- ENDIF
-
- IF Adiso,NOM(q,M)*NOM(q3,M)*NOM(q4,M)=Three(k,pp,u)
- Al,Dotpr,q(al~)=-q(al)
- ENDIF
-
- IF Adiso,NOM(q1,M)*NOM(q2,M)*NOM(q3,M)=Three(pp,kp,s)
- Al,Dotpr,q(al~)=q(al)-p(al)
- ENDIF
-
- IF Adiso,NOM(q,M)*NOM(q3,M)*NOM(q5,M)=Three(k,p,s)
- Al,Dotpr,q(al~)=-q(al)
- ENDIF
-
- Id,Adiso,NOM(q,M)*NOM(q6,M)*NOM(q2,M)=Three(pp,p,t)
-
- IF Adiso,NOM(q,M)*NOM(q6,M)*NOM(q3,M)=Three(k,pp,u)
- Al,Dotpr,q(al~)=q(al)+k(al)
- ENDIF
-
- Id,Adiso,NOM(q,M)*NOM(q6,M)*NOM(q5,M)=Three(pp,kp,s)
-
- IF Adiso,NOM(q1,M)*NOM(q3,M)*NOM(q4,M)=Three(kp,pp,s)
- Al,Dotpr,q(al~)=q(al)-p(al)
- ENDIF
-
- IF Adiso,NOM(q6,M)*NOM(q3,M)*NOM(q2,M)=Three(p,kp,u)
- Al,Dotpr,q(al~)=q(al)-pp(al)
- ENDIF
-
- Id,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
- B i,Pi,M
-
- C IF NOT D(a,b)
- Id,Addfa,0
- ENDIF
-
- P output
- *yep
-
- C Id,Three(p~,k~,t~)=Three(p,k,t)*Fxx(p,k,t)
-
- Id,All,q,N,Fq
- Id,Adiso,Three(p~,k~,t~)*Fq(al~,be~)=
- p(al)*p(be)*C21(t) + k(al)*k(be)*C22(t)
- + (p(al)*k(be)+k(al)*p(be))*C23(t) + D(al,be)*C24(t)
- Al,Adiso,Three(p~,k~,t~)*Fq(al~)=p(al)*C11(t) + k(al)*C12(t)
- Al,Three(p~,k~,t~)=CC0(t)
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
- Id,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Al,kpDkp=0
- Id,pDpp=-pDk-kDpp
- P output
- *yep
-
- Id,A0=1
- Al,A1=1
- Al,A2=1
- Al,R1=1
- Al,R2=1
- P output
- *yep
-
- CCCP{}
- *end
-
- C WW-scattering 16. Infinities and Log's of irreducible 4-point W function.
-
- C One loop diagrams.
- Four point function: WW scattering.
- Ln(m^2) and infinities.
- Notation: N_ = n-4, m = Higgs mass, Log(m) = Ln(m^2).
-
- Separate results: 'Long', containing partial result for longitudinal
- W's, crossed contributions not yet added. 'Tot' includes crossed
- pieces.
-
- P ninput
-
- I al=N,be=N,la=N,de=N,ga=N,la=N
-
- Read WWb.e
-
- ASSIGN{}
-
- VERT{}
-
- *fix
-
- V q1,q2,q3,q4,q0
- I m1=N,m0=N,m3=N,m4=N,m5=N,m6=N,m7=N,m8=N
- I a=3,b=3,c=3,d=3,e=3,f=3,g=3,h=3,j=3
- A N,N_
- F Ph,Pw,Fq
-
- Z BoxWW(a,al,k,b,be,p,c,ga,pp,d,de,kp) =
- VIER("W,a,al,k,"W,b,be,p,"W,c,ga,-pp,"W,d,de,-kp)
-
- C + VIER("W,a,al,k,"W,c,ga,-pp,"W,b,be,p,"W,d,de,-kp)
- + VIER("W,a,al,k,"W,b,be,p,"W,d,de,-kp,"W,c,ga,-pp)
-
- Id,VIER(K1~,a~,al~,k~,K2~,b~,be~,p~,K3~,c~,ga~,pp~,K4~,d~,de~,kp~)=
- + DS(K1;J4;-J1;TAP,(
- DS(K2;J1;-J2;TAP,(
- DS(K3;J2;-J3;TAP,(
- A0*VIE(K1,a,al,k,K2,b,be,p,K3,c,ga,pp,K4,d,de,kp,J1,J2,J3,J4)
- * DC("F,TFE,-1,J1,J2,J3,J4) ))) )))
-
- + DS(K1;K3;J7;-J5;TAP,(
- DS(K2;J5;-J6;TAP,(DC("F,TFE,-1,J5,J6,J7)*
- A1*VIE1(K1,a,al,k,K2,b,be,p,K3,c,ga,pp,K4,d,de,kp,J5,J6,J7) )) ))
-
- + DS(K2;K4;J8;-J9;TAP,(
- DS(K1;JA;-J8;TAP,(DC("F,TFE,-1,J8,J9,JA)*
- A2*VIE2(K1,a,al,k,K2,b,be,p,K3,c,ga,pp,K4,d,de,kp,J8,J9,JA) )) ))
-
- + DS(K1;K3;J0;-JB;Sym;J0;-JB;TAP,(DC("F,TFE,-1,J0,JB)*
- A3*VIE3(K1,a,al,k,K2,b,be,p,K3,c,ga,pp,K4,d,de,kp,JB,J0) ) )
-
-
- Id,Anti,TAP
-
- Id, VIE(K1~,a~,al~,k~,K2~,b~,be~,p~,
- K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~,J2~,J3~,J4~)=
- VE3(K1,J4,-J1,*,a,al,k,*,l8,m8,q3,*,l1,m1,-q)*
- VE3(K2,J1,-J2,*,b,be,p,*,l2,m0,q,*,l3,m3,-q1)*
- VE3(K3,J2,-J3,*,c,ga,pp,*,l4,m4,q1,*,l5,m5,-q2)*
- VE3(K4,J3,-J4,*,d,de,kp,*,l6,m6,q2,*,l7,m7,-q3)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q1,*,l4,m4,-q1)*
- PROP(J3,-J3,*,l5,m5,q2,*,l6,m6,-q2)*
- PROP(J4,-J4,*,l7,m7,q3,*,l8,m8,-q3)
-
- Al,VIE1(K1~,a~,al~,k~,K2~,b~,be~,p~,
- K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~,J2~,J3~)=
- VE4(K1,K3,J3,-J1,*,a,al,k,*,c,ga,pp,*,l6,m6,q4,*,l1,m1,-q)*
- VE3(K2,J1,-J2,*,b,be,p,*,l2,m0,q,*,l3,m3,-q1)*
- VE3(K4,J2,-J3,*,d,de,kp,*,l4,m4,q1,*,l5,m5,-q4)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q1,*,l4,m4,-q1)*
- PROP(J3,-J3,*,l5,m5,q4,*,l6,m6,-q4)
-
- Al,VIE2(K1~,a~,al~,k~,K2~,b~,be~,p~,
- K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~,J2~,J3~)=
- VE4(K2,K4,J1,-J2,*,b,be,p,*,d,de,kp,*,l2,m0,q,*,l3,m3,-q4)*
- VE3(K1,J3,-J1,*,a,al,k,*,l6,m6,q3,*,l1,m1,-q)*
- VE3(K3,J2,-J3,*,c,ga,pp,*,l4,m4,q4,*,l5,m5,-q3)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q4,*,l4,m4,-q4)*
- PROP(J3,-J3,*,l5,m5,q3,*,l6,m6,-q3)
-
- Al,VIE3(K1~,a~,al~,k~,K2~,b~,be~,p~,
- K3~,c~,ga~,pp~,K4~,d~,de~,kp~,J1~,J2~)=
- VE4(K1,K3,J2,-J1,*,a,al,k,*,c,ga,pp,*,l4,m4,q4,*,l1,m1,-q)*
- VE4(K2,K4,J1,-J2,*,b,be,p,*,d,de,kp,*,l2,m0,q,*,l3,m3,-q4)*
- PROP(J1,-J1,*,l1,m1,q,*,l2,m0,-q)*
- PROP(J2,-J2,*,l3,m3,q4,*,l4,m4,-q4)
-
- Id,Compo,<X>,VE4,VE3,PROP
- Id,Stats
- Id,VE4(FF~,l1~,al~,k~,l2~,be~,p~,l3~,ga~,pp~,l4~,la~,kp~)=
- FF(l1,al,k,l2,be,p,l3,ga,pp,l4,la,kp)
- Al,VE3(FF~,l1~,al~,k~,l2~,be~,q~,l3~,ga~,p~)=
- FF(l1,al,k,l2,be,q,l3,ga,p)
- Al,PROP(FF~,l1~,al~,q~,l2~,be~,k~)=FF(l1,al,l2,be,k)
-
- Id,Count,-4,NOM,-2,q,1,q1,1,q2,1,q3,1,q4,1
-
- C Only divergent pieces.
-
- Id,q1(al~)=q(al)
- Al,Dotpr,q1(al~)=q(al)
- Id,q2(al~)=q(al)
- Al,Dotpr,q2(al~)=q(al)
- Id,q3(al~)=q(al)
- Al,Dotpr,q3(al~)=q(al)
- Id,q4(al~)=q(al)
- Al,Dotpr,q4(al~)=q(al)
- Id,k(al)=0
- Al,p(be)=0
- Al,pp(ga)=0
- Al,kp(de)=0
- Id,pDp=-M^2
- Al,kDk=-M^2
- Al,ppDpp=-M^2
- Al,kpDkp=-M^2
-
- Id,Count,-4,q,1,NOM,-2
- Al,Even,NOM,1
- Id,NOM(q~,M)=Nom
- Al,NOM(q~,m)=Nohm
- B Nom,Nohm
- Id,Epfred
- *yep
-
- IF Nohm^n~*Nom^l~=1/q2M^l/q2m^n
- Id,2,Ratio,q2M,q2m,[m2-M2]
- Id,q2M^n~=1/Nom^n
- Al,q2m^n~=1/Nohm^n
- ENDIF
-
- Id,All,q,N,Fq
-
- Id,Fq(al~)=0
- Al,Fq(al~,be~,ga~)=0
- Al,Fq(al~,be~,ga~,de~,la~)=0
- Al,Fq(al~,be~,ga~,de~,la~,a~,b~)=0
- Id,Fq(al~,be~,ga~,de~)*Nom^l~ = dede(al,be,ga,de)*H(l,M2)
- Al,Fq(al~,be~)*Nom^l~ = D(al,be)*G(l,M2)
- Al,Nom^n~ = F(n,M2)
- Id,Fq(al~,be~,ga~,de~)*Nohm^l~ = dede(al,be,ga,de)*H(l,m2)
- Al,Fq(al~,be~)*Nohm^l~ = D(al,be)*G(l,m2)
- Al,Nohm^l~ = F(l,m2)
-
- STINT{}
-
- Id,Count,0,m,1,m2,2,[m2-M2],2
- Id,[m2-M2]^n~=m2^n
-
- Id,M2^n~=M^(2*n)
- Al,m2^n~=m^(2*n)
- Id,N=N_+4
- Id,N_=0
-
- Id,Count,1,N_,-1,Log,1
- Id,Log(M2)=0
- Al,Log(m2)=Logm2
-
- B i,Pi,M,N_
- Keep BoxWW
-
- *next
-
- C Longitudinal, u-channel.
-
- Z Long(a,k,b,p,c,pp,d,kp)
- = BoxWW(a,k,k,b,p,p,c,pp,pp,d,kp,kp)/M^4
-
- Id,kpDkp=0
- Al,kp(al~)=-k(al)-p(al)-pp(al)
- Al,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
-
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Id,pDk= - 0.5*s
- Al,pDpp = - 0.5*t
- Al,kDpp = - 0.5*u
- B i,Pi,M,N_
- Id,t=-s-u
- Keep BoxWW
- *next
-
- P input
- C The calculation sofar needs addition of further diagrams, obtained
- by crossing. Also add counterterms.
-
- Z Total(a,al,k,b,be,p,c,ga,pp,d,de,kp)
- = BoxWW(a,al,k,b,be,p,c,ga,pp,d,de,kp)
- + BoxWW(a,al,k,c,ga,pp,b,be,p,d,de,kp)
- + BoxWW(a,al,k,b,be,p,d,de,kp,c,ga,pp)
- + DLP*WWWW(a,al,k,b,be,p,c,ga,pp,d,de,kp)*WWWWK
-
- B i,Pi
-
- Id,A0=1
- Al,A1=1
- Al,A2=1
- Al,A3=1
-
- Id,Epfred
- ETE1{}
- P output
- *yep
- C Id,DLP=-1
- Keep Total
- *next
- C Longitudinal, full result.
-
- Z Tot = Total(a,k,k,b,p,p,c,pp,pp,d,kp,kp)/M^4
- Id,kpDkp=0
- Al,kp(al~)=-k(al)-p(al)-pp(al)
- Al,Dotpr,kp(al~)=-k(al)-p(al)-pp(al)
-
- Id,pDp=0
- Al,kDk=0
- Al,ppDpp=0
- Id,pDk= - 0.5*s
- Al,pDpp = - 0.5*t
- Al,kDpp = - 0.5*u
- B i,Pi,M,N_
- IF D(a,c)
- Id,t=-s-u
- ENDIF
- IF D(a,b)
- Id,u=-s-t
- ENDIF
- IF D(a,d)
- Id,s=-t-u
- ENDIF
- P output
- *yep
- Id,DLP=-1
- *end
- ə